Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét tam giácAMC và DMB ta có
AM=MD(GT)
BM=MC(GT)
góc AMC=BMD =>tam giác AMC=DMC(c.g.c)
=>góc MAC=MDB(tương ứng) Mà hai góc này nằm ở vị trí so le trong nên =>AC//BD
Xét tam giác BEMvà CFMta có
góc BEM=CFM(=90)
BM=MC(GT)
gics EMB=FMC(đối đỉnh)
=>tam giác BEM=CFM(cạnh huyền-góc nhọn)
=>BE=CF(tương ứng)
=>ME=MF(tương ứng)
Ta có AE+ME=AM
DF+MF=MD
Mà ME=MF;AM=MD nên =>AE=DF
a: Xét ΔMAB và ΔMDC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)
MB=MC
Do đó: ΔMAB=ΔMDC
=>\(\widehat{MAB}=\widehat{MDC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//CD
b: Xét ΔEMB vuông tại E và ΔFMC vuông tại F có
MB=MC
\(\widehat{EMB}=\widehat{FMC}\)(hai góc đối đỉnh)
Do đó: ΔEMB=ΔFMC
=>EM=FM
=>M là trung điểm của EF
a: Xét ΔMAC và ΔMDB có
MA=MD
\(\widehat{AMC}=\widehat{DMB}\)(hai góc đối đỉnh)
MC=MB
Do đó: ΔMAC=ΔMDB
b: Xét ΔMEB và ΔMFC có
ME=MF
\(\widehat{BME}=\widehat{CMF}\)(hai góc đối đỉnh)
MB=MC
Do đó: ΔMEB=ΔMFC
=>\(\widehat{MEB}=\widehat{MFC}\)
=>\(\widehat{MFC}=90^0\)
=>CF\(\perp\)AD
c: Xét tứ giác BFCE có
M là trung điểm chung của BC và FE
=>BFCE là hình bình hành
=>BF//CE và BF=CE
Ta có: BF//CE
B\(\in\)FG
Do đó: BG//CE
Ta có: BF=CE
BF=BG
Do đó: BG=CE
Xét tứ giác BGEC có
BG//EC
BG=EC
Do đó: BGEC là hình bình hành
=>BE cắt GC tại trung điểm của mỗi đường
mà H là trung điểm của BE
nên H là trung điểm của GC
=>G,H,C thẳng hàng
Hình bạn Tự vẽ nha!!!
a, Xét \(\Delta ABM\)và \(\Delta DCM\)
có AM=MD(gt)
\(\widehat{AMB}=\widehat{CMD}\)(đối đỉnh)
BM=MC(gt)
Từ 3 điều trên => 2 tam giác Trên bằng Nhau
b, Vì \(\Delta ABM\) = \(\Delta DCM\)(câu a)
=> \(\widehat{ABM=}\widehat{MCD}\)(2 góc tương ứng)
Mà 2 góc ở vị trí so le trong
Từ 2 điều trên Ta được \(AB//CD\)
c, Xét \(\Delta BFC\) vuông tại \(\widehat{BFC}=90^o\)(gt)
=> \(\widehat{BCF}+\widehat{FBC}=90^o\)(tính chất tam giác vuông)
Mà \(\widehat{FBC}=\widehat{BCD}\)(câu b)
Từ 2 điều trên ta được \(\widehat{BCF}+\widehat{BCD}=90^o=>\widehat{FCD}=90^o\)
Hay \(CF\perp CD\)tại C
Còn câu d thì mình có việc thì để sau nhé!!!
Chúc bạn Hk ttoto!!@@
a ) Xét \(\Delta\)AMC và \(\Delta\)DMB có :
- MA = MD ( giả thiết )
- BM = MC ( vì M là trung điểm BC )
- Góc AMC = Góc DMC ( đối đỉnh )
\(\Rightarrow\)\(\Delta\)AMC = \(\Delta\)DMB ( c - g - c )
b ) Ta có :
- BE \(\perp\)AD
- CF \(\perp\)AD
\(\Rightarrow\)BE // CF
c ) Ta có : \(\Delta\)AMC = \(\Delta\)DMB ( cmt )
\(\Rightarrow\)CÂM = Góc MDB ( 2 góc tương ứng )
Mà 2 góc này ở vị trí so le trong nên AC // BD
b: Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của BC
Do đó: ABDC là hình bình hành
Suy ra: AC//BD