K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2017

Đường tròn

Đường tròn

20 tháng 2 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Tam giác ABD nội tiếp trong đường tròn có AB là đường kính nên Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 = 90o hay Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 =  90 °

Tam giác ACM nội tiếp trong đường tròn có AC là đường kính nên Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 = 90 °

Suy ra: CM ⊥ AD ⇒ Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 =  90 °

Tam giác BCN nội tiếp trong đường tròn có AC là đường kính nên Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 =  90 °

Suy ra: CN ⊥ BD ⇒ Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 =  90 °

Tứ giác CMDN có ba góc vuông nên nó là hình chữ nhật

27 tháng 1 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Gọi P là trung điểm của AC, Q là trung điểm của BC, I là giao điểm của MN với DC

Vì CMDN là hình chữ nhật nên IC = IM = ID = IN

Tam giác CNI cân tại I nên Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 (3)

Tam giác CNQ cân tại Q nên Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9     (4)

Vì AB ⊥ CD nên Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 = 90 °    (5)

Từ (3), (4) và (5) suy ra: Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 =  90 °  hay MN ⊥ QN

Vậy MN là tiếp tuyến của đường tròn đường kính BC

Tam giác CMI cân tại I nên Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9     (6)

Tam giác CMP cân tại P nên Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9     (7)

Vì AB ⊥ CD nên Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 =  90 °     (8)

Từ (6), (7) và (8) suy ra: Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 =  90 °  hay MN ⊥ PM

Vậy MN là tiếp tuyến của đường tròn đường kính AC

2 tháng 11 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Tam giác ACD vuông tại C có CM ⊥ AD

Theo hệ thức lượng trong tam giác vuông, ta có:

C D 2  = DM.DA    (1)

Tam giác BCD vuông tại C có CN ⊥ BD

Theo hệ thức lượng trong tam giác vuông, ta có:

C D 2  = DN.DB    (2)

Từ (1) và (2) suy ra: DM.DA = DN.DB

a: góc AMC=1/2*180=90 độ

=>góc DMC=90 độ

góc CNB=1/2*180=90 độ

=>góc DNC=90 độ

Kẻ tiếp tuyến Cx của hai đường tròn đường kính AC,CB, Cx cắt MN tại I

Xét (E) có

IC,IM là tiếp tuyến

=>IC=IM

Xét (F) có

IN,IC là tiếp tuyến

=>IN=IC=IM

Xét ΔMCN có

CI là trung tuyến

CI=MN/2

=>ΔMCN vuông tại C

góc DMC=góc DNC=góc MCN=90 độ

=>DMCN là hcn

b: ΔDCA vuông tại C có CM vừa là đường cao

nên DM*DA=DC^2

ΔDCB vuông tại C có CN là đường cao

nên DN*DB=DC^2=DM*DA

20 tháng 9 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Gọi O là trung điểm của AB

Tứ giác CMDN là hình chữ nhật nên CD = MN

Trong tam giác OCD ta có: CD ≤ OD nên MN  ≤  OD

Vì OD không đổi nên MN = OD là giá trị lớn nhất khi và chỉ khi C trùng với O

Vậy C là trung điểm của AB thì MN có độ dài lớn nhất.

24 tháng 2 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vì AE, BF là các tiếp tuyến của nửa đường tròn nên

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

13 tháng 3 2018

Mọi người giúp mình với ạ !

14 tháng 3 2018

ko biết 

lười làm quá

3 tháng 1 2018

Bài 1:

a) Ax ⊥ OA tại A, By ⊥ OB tại B nên Ax, By là các tiếp tuyến của đường tròn.

Theo tính chất của hai tiếp tuyến cắt nhau ta có:

CM = CA; DM = DB;

∠O1 = ∠O2; ∠O3 = ∠O4

⇒ ∠O2 + ∠O3 = ∠O1 + ∠O4 = 1800/2 = 900 (tính chất hai tia phân giác của hai góc kề bù).

⇒ ∠OCD = 900

b) CM và CA là hai tiếp tuyến của đường tròn, cắt nhau tại C nên CM = CA

Tương tự:

DM = DB

⇒ CM + DM = CA + DB

⇒ CD = AC + BD.

c) Ta có OM ⊥ CD

Trong tam giá vuông COD, OM Là đường cao thuộc cạnh huyển

OM2 = CM.DM

Mà OM = OA = OA = AB/2 và CM = AC; DM = BD

Suy ra AC.BD = AB2/2 = không đổi