Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tam giác ACD vuông tại C có CM ⊥ AD
Theo hệ thức lượng trong tam giác vuông, ta có:
C D 2 = DM.DA (1)
Tam giác BCD vuông tại C có CN ⊥ BD
Theo hệ thức lượng trong tam giác vuông, ta có:
C D 2 = DN.DB (2)
Từ (1) và (2) suy ra: DM.DA = DN.DB
a: góc AMC=1/2*180=90 độ
=>góc DMC=90 độ
góc CNB=1/2*180=90 độ
=>góc DNC=90 độ
Kẻ tiếp tuyến Cx của hai đường tròn đường kính AC,CB, Cx cắt MN tại I
Xét (E) có
IC,IM là tiếp tuyến
=>IC=IM
Xét (F) có
IN,IC là tiếp tuyến
=>IN=IC=IM
Xét ΔMCN có
CI là trung tuyến
CI=MN/2
=>ΔMCN vuông tại C
góc DMC=góc DNC=góc MCN=90 độ
=>DMCN là hcn
b: ΔDCA vuông tại C có CM vừa là đường cao
nên DM*DA=DC^2
ΔDCB vuông tại C có CN là đường cao
nên DN*DB=DC^2=DM*DA
Tam giác ABD nội tiếp trong đường tròn có AB là đường kính nên = 90o hay = 90 °
Tam giác ACM nội tiếp trong đường tròn có AC là đường kính nên = 90 °
Suy ra: CM ⊥ AD ⇒ = 90 °
Tam giác BCN nội tiếp trong đường tròn có AC là đường kính nên = 90 °
Suy ra: CN ⊥ BD ⇒ = 90 °
Tứ giác CMDN có ba góc vuông nên nó là hình chữ nhật
Gọi O là trung điểm của AB
Tứ giác CMDN là hình chữ nhật nên CD = MN
Trong tam giác OCD ta có: CD ≤ OD nên MN ≤ OD
Vì OD không đổi nên MN = OD là giá trị lớn nhất khi và chỉ khi C trùng với O
Vậy C là trung điểm của AB thì MN có độ dài lớn nhất.
Gọi P là trung điểm của AC, Q là trung điểm của BC, I là giao điểm của MN với DC
Vì CMDN là hình chữ nhật nên IC = IM = ID = IN
Tam giác CNI cân tại I nên (3)
Tam giác CNQ cân tại Q nên (4)
Vì AB ⊥ CD nên = 90 ° (5)
Từ (3), (4) và (5) suy ra: = 90 ° hay MN ⊥ QN
Vậy MN là tiếp tuyến của đường tròn đường kính BC
Tam giác CMI cân tại I nên (6)
Tam giác CMP cân tại P nên (7)
Vì AB ⊥ CD nên = 90 ° (8)
Từ (6), (7) và (8) suy ra: = 90 ° hay MN ⊥ PM
Vậy MN là tiếp tuyến của đường tròn đường kính AC
a, Tứ giác CMHN là hình chữ nhật
b, Ta có
O
C
A
^
=
O
A
C
^
C B A ^ = A C H ^ ; A C H ^ = C M N ^
=> O C A ^ + C M N ^ = 90 0
Vậy OC ⊥ MN
c, Ta có ∆IOC có E là trực tâm suy ra IN đi qua M và E (đpcm)
d, Ta có E M A ^ = C M N ^ ; C M N ^ = C B A ^ => ∆EMA:∆ENB
Tương tự ∆EMH:∆EHN => EM.EN = E H 2 ngoài ra , ∆EHC vuông tại H có HD là đường cao
=> E H 2 = ED.EC. Từ đó ta có đpcm