Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xét (O) có
MA,MB là các tiếp tuyến
Do đó:MA=MB
=>M nằm trên đường trung trực của AB(1)
Ta có: OA=OB
=>O nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra MO là đường trung trực của AB
=>MO\(\perp\)AB tại H và H là trung điểm của AB
2: Ta có: ΔOAM vuông tại A
=>\(AO^2+AM^2=OM^2\)
=>\(AM^2=\left(2R\right)^2-R^2=3R^2\)
Xét ΔAMO vuông tại A có AH là đường cao
nên \(MH\cdot MO=MA^2\)
=>\(MH\cdot MO=3R^2\)
3:
Xét ΔOAM vuông tại A có \(sinAMO=\dfrac{OA}{OM}=\dfrac{1}{2}\)
nên \(\widehat{AMO}=30^0\)
Xét (O) có
MA,MB là các tiếp tuyến
Do đó: MO là phân giác của góc AMB
=>\(\widehat{AMB}=2\cdot\widehat{AMO}=2\cdot30^0=60^0\)
Xét ΔMAB có MA=MB và \(\widehat{AMB}=60^0\)
nên ΔMAB đều
4: Xét (O) có
\(\widehat{MAI}\) là góc tạo bởi tiếp tuyến AM và dây cung AI
\(\widehat{IKA}\) là góc nội tiếp chắn cung AI
Do đó: \(\widehat{MAI}=\widehat{IKA}\)
Xét ΔMAI và ΔMKA có
\(\widehat{MAI}=\widehat{MKA}\)
\(\widehat{AMI}\) chung
Do đó: ΔMAI đồng dạng với ΔMKA
=>\(\dfrac{MA}{MK}=\dfrac{MI}{MA}\)
=>\(MA^2=MI\cdot MK\)
mà \(MA^2=MH\cdot MO\)
nên \(MI\cdot MK=MH\cdot MO\)
Ta có: \(\widehat{MAI}+\widehat{OAI}=\widehat{OAM}=90^0\)
\(\widehat{HAI}+\widehat{OIA}=90^0\)(ΔAHI vuông tại H)
mà \(\widehat{OAI}=\widehat{OIA}\)(ΔOAI cân tại O)
nên \(\widehat{MAI}=\widehat{HAI}\)
=>AI là phân giác của góc MAH
a/
Xét tg vuông AMO có
\(\sin\widehat{AMO}=\dfrac{OA}{OM}=\dfrac{R}{2R}=\dfrac{1}{2}\Rightarrow\widehat{AMO}=30^o\)
Xét tg vuông AMO và tg vuông BMO có
MO chung; OA=OB=R => tg AMO = tg BMO (Hai tg vuông có cạnh huyền và 1 cạnh góc vuông bằng nhau)
\(\Rightarrow\widehat{AMO}=\widehat{BMO}=30^o\Rightarrow\widehat{AMO}+\widehat{BMO}=\widehat{AMB}=30^o+30^o=60^o\)
Xét tg MAB có
tg AMO = tg BMO (cmt) => MA=MB => tg MAB cân tại M
\(\Rightarrow\widehat{MAB}=\widehat{MBA}\)
Ta có
\(\widehat{MBA}+\widehat{MAB}=180^o-\widehat{AMB}=180^0-60^o=120^o\)
\(\Rightarrow2\widehat{MAB}=120^o\Rightarrow\widehat{MAB}=\widehat{MBA}=120^o:2=60^o\)
\(\Rightarrow\widehat{AMB}=\widehat{MAB}=\widehat{MBA}=60^o\) => tg MAB là tg đều
b/ Gọi H là giao của MO với AB
\(\Rightarrow AB\perp MO;HA=HB\) (2 tiếp tuyến cùng xp từ 1 điểm ngoài hình tròn thì đường nối điểm đó với tâm vuông góc và chia đôi đoạn thẳng nối 2 tiếp điểm)
Ta có
\(S_{AOC}=\dfrac{1}{2}.HA.OC;S_{BOC}=\dfrac{1}{2}.HB.OC\) mà HA=HB (cmt)
\(\Rightarrow S_{AOC}=S_{BOC}\)
\(S_{AOBC}=S_{AOC}+S_{BOC}=2.S_{AOC}=HA.OC\)
Xét tg vuông AMO có
\(AO^2=OH.MO\) (Trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)
\(\Rightarrow OH=\dfrac{AO^2}{MO}=\dfrac{R^2}{2R}=\dfrac{R}{2}\)
Ta có
\(MH=MO-OH=2R-\dfrac{R}{2}=\dfrac{3R}{2}\)
Ta có
\(HA^2=MH.OH\) (trong tg vuông bình phương đường cao hạ từ đỉnh góc vuông xuống cạnh huyền bằng tích giữa 2 hình chiếu của 2 cạnh góc vuông trên cạnh huyền)
\(\Rightarrow HA=\sqrt{MH.OH}=\sqrt{\dfrac{3R}{2}.\dfrac{R}{2}}=\dfrac{R\sqrt{3}}{2}\)
\(\Rightarrow S_{AOBC}=HA.OC=\dfrac{R\sqrt{3}}{2}.R=\dfrac{R^2\sqrt{3}}{2}\)
c/
Ta có
\(MA\perp OA;OD\perp OA\) => MA//OD
\(\Rightarrow\widehat{MOD}=\widehat{AMO}=30^o\) (góc so le trong)
Xét tg vuông BMO có
\(\widehat{MOB}=90^o-\widehat{OMB}=90^o-30^o=60^o\)
\(\Rightarrow\widehat{BOD}=\widehat{MOB}-\widehat{MOD}=60^o-30^o=30^o\)
\(\Rightarrow\widehat{MOD}=\widehat{BOD}=30^o\)
Xét tg BOD và tg COD có
\(OB=OC=R\)
OD chung
\(\widehat{BOD}=\widehat{MOD}\) (cmt)
=> tg BOD = tg COD (c.g.c)\(\Rightarrow\widehat{OCD}=\widehat{OBD}=90^o\Rightarrow CD\perp OC\)
=> CD là tiếp tuyến với (O)
a: Xét (O) có
MA,MB là các tiếp tuyến
Do đó: MA=MB
=>M nằm trên đường trung trực của AB(1)
Ta có: OA=OB
=>O nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra OM là đường trung trực của AB
b: Xét ΔOAM vuông tại A có \(sinAMO=\dfrac{OA}{OM}=\dfrac{1}{2}\)
nên \(\widehat{AMO}=30^0\)
Xét (O) có
MA,MB là các tiếp tuyến
Do đó: MO là phân giác của góc AMB
=>\(\widehat{AMB}=2\cdot\widehat{AMO}=60^0\)
Xét ΔMAB có MA=MB và \(\widehat{AMB}=60^0\)
nên ΔMAB đều
c: Xét (O) có
CA,CP là các tiếp tuyến
Do đó: CA=CP và OC là phân giác của góc AOP
Xét (O) có
DB,DP là các tiếp tuyến
Do đó; DB=DP và OD là phân giác của góc BOP
ΔOAM vuông tại A
=>\(OA^2+AM^2=OM^2\)
=>\(AM^2=\left(2R\right)^2-R^2=3R^2\)
=>\(AM=R\sqrt{3}\)
Chu vi tam giác MCD là:
\(C_{MCD}=MC+CD+MD\)
\(=MC+CP+MD+DP\)
\(=MC+CA+MD+DB\)
=MA+MB=2MA=\(=R\sqrt{3}\cdot2=2R\sqrt{3}\)
d: Ta có: OC là phân giác của góc AOP
=>\(\widehat{AOP}=2\cdot\widehat{COP}\)
Ta có: OD là phân giác của góc BOP
=>\(\widehat{BOP}=2\cdot\widehat{DOP}\)
Xét tứ giác OAMB có
\(\widehat{OAM}+\widehat{OBM}+\widehat{AMB}+\widehat{AOB}=360^0\)
=>\(\widehat{AOB}+60^0+90^0+90^0=360^0\)
=>\(\widehat{AOB}=120^0\)
Ta có: \(\widehat{AOP}+\widehat{BOP}=\widehat{AOB}\)
=>\(2\cdot\left(\widehat{COP}+\widehat{DOP}\right)=120^0\)
=>\(2\cdot\widehat{COD}=60^0\cdot2\)
=>\(\widehat{COD}=60^0\)
a) Xét (O) có
MA là tiếp tuyến có A là tiếp điểm(gt)
MB là tiếp tuyến có B là tiếp điểm(gt)
Do đó: MA=MB(Tính chất hai tiếp tuyến cắt nhau)
Ta có: OA=OB(=R)
nên O nằm trên đường trung trực của AB(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: MA=MB(cmt)
nên M nằm trên đường trung trực của AB(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra OM là đường trung trực của AB
hay OM\(\perp\)AB
Xét (O) có
A\(\in\)(O)(gt)
D\(\in\)(O)(gt)
Do đó: OA=OD(=R)
mà A,O,D thẳng hàng(gt)
nên O là trung điểm của AD
Xét (O) có
O là trung điểm của AD(cmt)
O là tâm của đường tròn(O)(gt)
Do đó: AD là đường kính của (O)
Xét (O) có
ΔADB nội tiếp đường tròn(A,D,B\(\in\)(O))
AD là đường kính của (O)(cmt)
Do đó: ΔADB vuông tại B(Định lí)
hay DB\(\perp\)AB
Ta có: DB\(\perp\)AB(cmt)
OM\(\perp\)AB(cmt)
Do đó: MO//BD(Định lí 1 từ vuông góc tới song song)
b: Gọi giao điểm của OM và AB là H
Suy ra: H là trung điểm của AB
Xét ΔOAM vuông tại A có
\(OM^2=OA^2+AM^2\)
\(\Leftrightarrow AM=\dfrac{R\sqrt{3}}{2}\left(cm\right)\)
Xét ΔOAM vuông tại A có AH là đường cao ứng với cạnh huyền OM
nên \(AH\cdot OM=OA\cdot AM\)
\(\Leftrightarrow AH\cdot2\cdot R=\dfrac{R^2\sqrt{3}}{2}\)
\(\Leftrightarrow AH=\dfrac{R^2\sqrt{3}}{2}\cdot\dfrac{1}{2R}=\dfrac{R\sqrt{3}}{4}\)
\(\Leftrightarrow AB=\dfrac{R\sqrt{3}}{2}\)
c: Xét ΔMAB có MA=MB
nên ΔMAB cân tại M
d) Ta có:
K là trung điểm của CE (E đối xứng với C qua AB)
K là trung điểm của AB
AB ⊥ CE (MO ⊥ AB)
⇒ Tứ giác AEBC là hình thoi
⇒ BE // AC
Mà AC ⊥ AD (A thuộc đường tròn đường kính CD)
Nên BE ⊥ AD và DK ⊥ AB
Vậy E là trực tâm của tam giác ADB
a)
Gọi C’ là trung điểm của OM.
Suy ra BC’ là đường trung tuyến
Suy ra tam giác OBC là tam giác đều : OB=OC’=BC’=R
Suy ra góc BOC’ =60 độ
Mà goc BAM = góc BOC’ = sđcung BA chia 2 = sđ cung BC’ ( do cung BC’=cung C’A);
Suy ra góc BAM=60 độ
Mà tam giác BAM là tam giác cân có MA=MB(tính chất hai tiếp tuyến cắt nhau)
Suy ra tam giác BAM là tam giác đều.
Do BAM là tam giác đều suy ra AB=MA=MB
Áp dụng định lí py-ta-go trong tam giác vuông ta có:
b)
ta thấy điểm C trùng với C’
mà ta có OB=OA=AC’=BC’=R
suy ra tứ giác OBC’A là hình thoi
suy ra tứ giác OBCA là hình thoi