K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2019

a)

Gọi C’ là trung điểm của OM.

Suy ra BC’ là đường trung tuyến

Suy ra tam giác OBC là tam giác đều : OB=OC’=BC’=R

Suy ra góc BOC’ =60 độ

Mà goc BAM = góc BOC’ = sđcung BA chia 2 = sđ cung BC’ ( do cung BC’=cung C’A);

 Suy ra góc BAM=60 độ

Mà tam giác BAM là tam giác cân có MA=MB(tính chất hai tiếp tuyến cắt nhau)

Suy ra tam giác BAM là tam giác đều.

Do BAM là tam giác đều suy ra AB=MA=MB

Áp dụng định lí py-ta-go trong tam giác vuông ta có:

         

b)

ta thấy điểm C trùng với C’

mà ta có OB=OA=AC’=BC’=R

suy ra tứ giác OBC’A là hình thoi

suy ra tứ giác OBCA là hình thoi

14 tháng 12 2023

1: Xét (O) có

MA,MB là các tiếp tuyến

Do đó:MA=MB

=>M nằm trên đường trung trực của AB(1)

Ta có: OA=OB

=>O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra MO là đường trung trực của AB

=>MO\(\perp\)AB tại H và H là trung điểm của AB

2: Ta có: ΔOAM vuông tại A

=>\(AO^2+AM^2=OM^2\)

=>\(AM^2=\left(2R\right)^2-R^2=3R^2\)

Xét ΔAMO vuông tại A có AH là đường cao

nên \(MH\cdot MO=MA^2\)

=>\(MH\cdot MO=3R^2\)

3:

Xét ΔOAM vuông tại A có \(sinAMO=\dfrac{OA}{OM}=\dfrac{1}{2}\)

nên \(\widehat{AMO}=30^0\)

Xét (O) có

MA,MB là các tiếp tuyến

Do đó: MO là phân giác của góc AMB

=>\(\widehat{AMB}=2\cdot\widehat{AMO}=2\cdot30^0=60^0\)

Xét ΔMAB có MA=MB và \(\widehat{AMB}=60^0\)

nên ΔMAB đều

4: Xét (O) có

\(\widehat{MAI}\) là góc tạo bởi tiếp tuyến AM và dây cung AI

\(\widehat{IKA}\) là góc nội tiếp chắn cung AI

Do đó: \(\widehat{MAI}=\widehat{IKA}\)

Xét ΔMAI và ΔMKA có

\(\widehat{MAI}=\widehat{MKA}\)

\(\widehat{AMI}\) chung

Do đó: ΔMAI đồng dạng với ΔMKA

=>\(\dfrac{MA}{MK}=\dfrac{MI}{MA}\)

=>\(MA^2=MI\cdot MK\)

mà \(MA^2=MH\cdot MO\)

nên \(MI\cdot MK=MH\cdot MO\)

Ta có: \(\widehat{MAI}+\widehat{OAI}=\widehat{OAM}=90^0\)

\(\widehat{HAI}+\widehat{OIA}=90^0\)(ΔAHI vuông tại H)

mà \(\widehat{OAI}=\widehat{OIA}\)(ΔOAI cân tại O)

nên \(\widehat{MAI}=\widehat{HAI}\)

=>AI là phân giác của góc MAH

9 tháng 1

M A B O C H D

a/

Xét tg vuông AMO có

\(\sin\widehat{AMO}=\dfrac{OA}{OM}=\dfrac{R}{2R}=\dfrac{1}{2}\Rightarrow\widehat{AMO}=30^o\)

Xét tg vuông AMO và tg vuông BMO có

MO chung; OA=OB=R => tg AMO = tg BMO (Hai tg vuông có cạnh huyền và 1 cạnh góc vuông bằng nhau)

\(\Rightarrow\widehat{AMO}=\widehat{BMO}=30^o\Rightarrow\widehat{AMO}+\widehat{BMO}=\widehat{AMB}=30^o+30^o=60^o\)

Xét tg MAB có

tg AMO = tg BMO (cmt) => MA=MB => tg MAB cân tại M

\(\Rightarrow\widehat{MAB}=\widehat{MBA}\)

Ta có

\(\widehat{MBA}+\widehat{MAB}=180^o-\widehat{AMB}=180^0-60^o=120^o\)

\(\Rightarrow2\widehat{MAB}=120^o\Rightarrow\widehat{MAB}=\widehat{MBA}=120^o:2=60^o\)

\(\Rightarrow\widehat{AMB}=\widehat{MAB}=\widehat{MBA}=60^o\) => tg MAB là tg đều

b/ Gọi H là giao của MO với AB

\(\Rightarrow AB\perp MO;HA=HB\) (2 tiếp tuyến cùng xp từ 1 điểm ngoài hình tròn thì đường nối điểm đó với tâm vuông góc và chia đôi đoạn thẳng nối 2 tiếp điểm)

Ta có

\(S_{AOC}=\dfrac{1}{2}.HA.OC;S_{BOC}=\dfrac{1}{2}.HB.OC\) mà HA=HB (cmt)

\(\Rightarrow S_{AOC}=S_{BOC}\)

\(S_{AOBC}=S_{AOC}+S_{BOC}=2.S_{AOC}=HA.OC\) 

Xét tg vuông AMO có

\(AO^2=OH.MO\) (Trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)

\(\Rightarrow OH=\dfrac{AO^2}{MO}=\dfrac{R^2}{2R}=\dfrac{R}{2}\)

Ta có

\(MH=MO-OH=2R-\dfrac{R}{2}=\dfrac{3R}{2}\)

Ta có

\(HA^2=MH.OH\) (trong tg vuông bình phương đường cao hạ từ đỉnh góc vuông xuống cạnh huyền bằng tích giữa 2 hình chiếu của 2 cạnh góc vuông trên cạnh huyền)

\(\Rightarrow HA=\sqrt{MH.OH}=\sqrt{\dfrac{3R}{2}.\dfrac{R}{2}}=\dfrac{R\sqrt{3}}{2}\)

\(\Rightarrow S_{AOBC}=HA.OC=\dfrac{R\sqrt{3}}{2}.R=\dfrac{R^2\sqrt{3}}{2}\)

c/

Ta có

\(MA\perp OA;OD\perp OA\) => MA//OD

 \(\Rightarrow\widehat{MOD}=\widehat{AMO}=30^o\) (góc so le trong)

Xét tg vuông BMO có

\(\widehat{MOB}=90^o-\widehat{OMB}=90^o-30^o=60^o\)

\(\Rightarrow\widehat{BOD}=\widehat{MOB}-\widehat{MOD}=60^o-30^o=30^o\)

\(\Rightarrow\widehat{MOD}=\widehat{BOD}=30^o\)

Xét tg BOD và tg COD có

\(OB=OC=R\)

OD chung

\(\widehat{BOD}=\widehat{MOD}\) (cmt)

=> tg BOD = tg COD (c.g.c)\(\Rightarrow\widehat{OCD}=\widehat{OBD}=90^o\Rightarrow CD\perp OC\)

=> CD là tiếp tuyến với (O)

 

 

a: Xét (O) có

MA,MB là các tiếp tuyến

Do đó: MA=MB

=>M nằm trên đường trung trực của AB(1)

Ta có: OA=OB

=>O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra OM là đường trung trực của AB

b: Xét ΔOAM vuông tại A có \(sinAMO=\dfrac{OA}{OM}=\dfrac{1}{2}\)

nên \(\widehat{AMO}=30^0\)

Xét (O) có

MA,MB là các tiếp tuyến

Do đó: MO là phân giác của góc AMB

=>\(\widehat{AMB}=2\cdot\widehat{AMO}=60^0\)

Xét ΔMAB có MA=MB và \(\widehat{AMB}=60^0\)

nên ΔMAB đều

c: Xét (O) có

CA,CP là các tiếp tuyến

Do đó: CA=CP và OC là phân giác của góc AOP

Xét (O) có

DB,DP là các tiếp tuyến

Do đó; DB=DP và OD là phân giác của góc BOP

ΔOAM vuông tại A

=>\(OA^2+AM^2=OM^2\)

=>\(AM^2=\left(2R\right)^2-R^2=3R^2\)

=>\(AM=R\sqrt{3}\)

Chu vi tam giác MCD là:

\(C_{MCD}=MC+CD+MD\)

\(=MC+CP+MD+DP\)

\(=MC+CA+MD+DB\)

=MA+MB=2MA=\(=R\sqrt{3}\cdot2=2R\sqrt{3}\)

d: Ta có: OC là phân giác của góc AOP

=>\(\widehat{AOP}=2\cdot\widehat{COP}\)

Ta có: OD là phân giác của góc BOP

=>\(\widehat{BOP}=2\cdot\widehat{DOP}\)

Xét tứ giác OAMB có

\(\widehat{OAM}+\widehat{OBM}+\widehat{AMB}+\widehat{AOB}=360^0\)

=>\(\widehat{AOB}+60^0+90^0+90^0=360^0\)

=>\(\widehat{AOB}=120^0\)

Ta có: \(\widehat{AOP}+\widehat{BOP}=\widehat{AOB}\)

=>\(2\cdot\left(\widehat{COP}+\widehat{DOP}\right)=120^0\)

=>\(2\cdot\widehat{COD}=60^0\cdot2\)

=>\(\widehat{COD}=60^0\)

12 tháng 1

Thank youuu :3

a) Xét (O) có 

MA là tiếp tuyến có A là tiếp điểm(gt)

MB là tiếp tuyến có B là tiếp điểm(gt)

Do đó: MA=MB(Tính chất hai tiếp tuyến cắt nhau)

Ta có: OA=OB(=R)

nên O nằm trên đường trung trực của AB(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: MA=MB(cmt)

nên M nằm trên đường trung trực của AB(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra OM là đường trung trực của AB

hay OM\(\perp\)AB

Xét (O) có 

A\(\in\)(O)(gt)

D\(\in\)(O)(gt)

Do đó: OA=OD(=R)

mà A,O,D thẳng hàng(gt)

nên O là trung điểm của AD

Xét (O) có

O là trung điểm của AD(cmt)

O là tâm của đường tròn(O)(gt)

Do đó: AD là đường kính của (O)

Xét (O) có

ΔADB nội tiếp đường tròn(A,D,B\(\in\)(O))

AD là đường kính của (O)(cmt)

Do đó: ΔADB vuông tại B(Định lí)

hay DB\(\perp\)AB

Ta có: DB\(\perp\)AB(cmt)

OM\(\perp\)AB(cmt)

Do đó: MO//BD(Định lí 1 từ vuông góc tới song song)

b: Gọi giao điểm của OM và AB là H

Suy ra: H là trung điểm của AB

Xét ΔOAM vuông tại A có 

\(OM^2=OA^2+AM^2\)

\(\Leftrightarrow AM=\dfrac{R\sqrt{3}}{2}\left(cm\right)\)

Xét ΔOAM vuông tại A có AH là đường cao ứng với cạnh huyền OM

nên \(AH\cdot OM=OA\cdot AM\)

\(\Leftrightarrow AH\cdot2\cdot R=\dfrac{R^2\sqrt{3}}{2}\)

\(\Leftrightarrow AH=\dfrac{R^2\sqrt{3}}{2}\cdot\dfrac{1}{2R}=\dfrac{R\sqrt{3}}{4}\)

\(\Leftrightarrow AB=\dfrac{R\sqrt{3}}{2}\)

c: Xét ΔMAB có MA=MB

nên ΔMAB cân tại M

16 tháng 6 2018

Đề kiểm tra Toán 9 | Đề thi Toán 9

d) Ta có:

K là trung điểm của CE (E đối xứng với C qua AB)

K là trung điểm của AB

AB ⊥ CE (MO ⊥ AB)

⇒ Tứ giác AEBC là hình thoi

⇒ BE // AC

Mà AC ⊥ AD (A thuộc đường tròn đường kính CD)

Nên BE ⊥ AD và DK ⊥ AB

Vậy E là trực tâm của tam giác ADB