Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔOAM vuông tại A có AH là đường cao
nên \(OH\cdot OM=OA^2=R^2\)
a: Xét ΔOAM và ΔOBM có
OA=OB
\(\widehat{AOM}=\widehat{BOM}\)
OM chung
Do đó: ΔOAM=ΔOBM
Suy ra: MB là tiếp tuyến của (O)
c: Xét (O) có
ΔABC nội tiếp đường tròn
AB là đường kính
Do đó:ΔABC vuông tại C
Xét ΔOMA vuông tại A có AC là đường cao
nên \(MB\cdot MC=MA^2\left(1\right)\)
Xét ΔOAM vuông tại A có AH là đường cao
nên \(MH\cdot MO=MA^2\left(2\right)\)
Từ (1) và (2) suy ra \(MB\cdot MC=MH\cdot MO\)
a: Xét (O) có
MA,MB là tiếp tuyến
Do đó: MA=MB
=>M nằm trên đường trung trực của AB(1)
OA=OB
=>O nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra MO là đường trung trực của AB
=>MO\(\perp\)AB tại trung điểm của mỗi đường
=>MO\(\perp\)AB tại H và H là trung trung điểm của AB
b: Xét ΔOAM vuông tại A có AH là đường cao
nên \(OH\cdot OM=OA^2\)
a: Xét (O) có
OH là một phần đường kính
BC là dây
OH⊥BC tại H
Do đó:H là trung điểm của BC
Xét ΔABC có
AH là đường cao
AH là đường trung tuyến
Do đó: ΔABC cân tại A
Xét ΔOBA và ΔOCA có
OB=OC
BA=CA
OA chung
Do đó: ΔOBA=ΔOCA
Suy ra: \(\widehat{OBA}=\widehat{OCA}=90^0\)
hay AC là tiếp tuyến
b: Xét ΔOBA vuông tại B có
\(\sin BAO=\dfrac{OB}{OA}=\dfrac{1}{2}\)
=>\(\widehat{BAO}=30^0\)
hay \(\widehat{BAC}=60^0\)
mà ΔABC cân tại A
nên ΔABC đều
a: Xét ΔOMA vuông tại A có
\(OM^2=OA^2+AM^2\)
hay AM=16cm
a: Xét ΔOAM vuông tại A có AH là đường cao
nên \(OH\cdot OM=OA^2=R^2\)