K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2019

Hình như hơi sai đề

7 tháng 1 2019

ko đúng đấy chứ

mình nhầm :

2) Vì /2x-3y/2015 lớn h+n hoặc bằng 0

và (x+y+x)2014 lớn hơn hoặc bằng 0 (với mọi x , y )

Mà /2x-3y/2015+ (x+y+z)2014 = 0

=) x+y+z = 0 (1)

=)2x- 3y = 0

=) x+y+x =0

=) 2(x+y+x)=0

=) 2x + 2y + 2x = 0

=) 3y+2y+3y = 0

=) 7y=0 =)y=0

thay y =0 vào (1)

=) ta có : x+y+x=0

=)x+0+x = 0

=) 2x=0 =) x=0

Vậy (x,y) = (0,0)

AH
Akai Haruma
Giáo viên
9 tháng 11 2021

Lời giải:

Đặt $\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=t$

$\Rightarrow x=at; y=bt; z=ct$. Ta có:

$(x+y+z)^2=(at+bt+ct)^2=t^2(a+b+c)^2=t^2(*)$

Mặt khác:

$x^2+y^2+z^2=(at)^2+(bt)^2+(ct)^2=t^2(a^2+b^2+c^2)=t^2(**)$

Từ $(*); (**)\Rightarrow (x+y+z)^2=x^2+y^2+z^2$ (đpcm)

9 tháng 11 2021

em cảm ơn cô/thầy nhiều

16 tháng 10 2017

4.a

\(\dfrac{3x-y}{x+y}=\dfrac{3}{4}\\ \Leftrightarrow\left(3x-y\right).4=3\left(x+y\right)\\ \Rightarrow12x-4y=3x+3y\\ \Rightarrow12x-3x=4y+3y\\ \Rightarrow9x=7y\\ \Rightarrow\dfrac{x}{y}=\dfrac{7}{9}\)

17 tháng 10 2017

Thanks

NV
18 tháng 1 2022

\(bx^2=ay^2\Rightarrow\dfrac{x^2}{a}=\dfrac{y^2}{b}=\dfrac{x^2+y^2}{a+b}=\dfrac{1}{a+b}\)

\(\Rightarrow\left(\dfrac{x^2}{a}\right)^{1000}=\left(\dfrac{y^2}{b}\right)^{1000}=\left(\dfrac{1}{a+b}\right)^{1000}\)

\(\Rightarrow\dfrac{x^{2000}}{a^{1000}}=\dfrac{y^{2000}}{b^{1000}}=\dfrac{1}{\left(a+b\right)^{1000}}\)

\(\Rightarrow\dfrac{x^{2000}}{a^{1000}}+\dfrac{y^{2000}}{b^{1000}}=\dfrac{1}{\left(a+b\right)^{1000}}+\dfrac{1}{\left(a+b\right)^{1000}}=\dfrac{2}{\left(a+b\right)^{1000}}\)

20 tháng 11 2021

Áp dụng tc dtsbn:

\(\dfrac{x}{2013}=\dfrac{y}{2014}=\dfrac{z}{2015}=\dfrac{x-z}{-2}=\dfrac{y-z}{-1}=\dfrac{x-y}{-1}\\ \Leftrightarrow\dfrac{x-z}{2}=\dfrac{y-z}{1}=\dfrac{x-y}{1}\\ \Leftrightarrow x-z=2\left(y-z\right)=2\left(x-y\right)\\ \Leftrightarrow\left(x-z\right)^3=8\left(x-y\right)^3=8\left(x-y\right)^2\left(x-y\right)=8\left(x-y\right)^2\left(y-z\right)\)

22 tháng 12 2017

5a.

\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+....+\dfrac{1}{19.21}\\ =\dfrac{1}{2}\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+....+\dfrac{1}{19}-\dfrac{1}{21}\right)\\ =\dfrac{1}{2}\left(1-\dfrac{1}{21}\right)\\ =\dfrac{1}{2}.\dfrac{20}{21}=\dfrac{10}{21}\)

b.

\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}\\ =\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+....+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)\\ =\dfrac{1}{2}\left(1-\dfrac{1}{2n+1}\right)< \dfrac{1}{2}.1=\dfrac{1}{2}\)