Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAD vuông tại A và ΔBMD vuông tại M có
BD chung
góc ABD=góc MBD
=>ΔBAD=ΔBMD
=>BA=BM và DA=DM
b: BD=căn 16^2+12^2=20cm
c: Xét ΔBMI vuông tại M và ΔBAC vuông tại A có
BM=BA
góc MBI chung
=>ΔBMI=ΔBAC
=>BI=BC
=>ΔBIC cân tại B
a) áp dụng định lý Pytago cho tam giác ABC vuông tại A
b) \(\Delta BAD=\Delta BHD\left(ch-gn\right)\)vì:
\(\hept{\begin{cases}BDchung\\\widehat{BHD}=\widehat{BAD}=90^o\\\widehat{ABD}=\widehat{DBH}\end{cases}}\)
a,\(\Delta ABC\)vuông tại A , theo định lí Py - ta - go , ta có :
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2\)
\(\Rightarrow BC^2=10^2\)
\(\Leftrightarrow BC=10\)
b, xét tam giác vuông \(ABD\)và tam giác vuông \(HBD\)có
\(\widehat{BD}\)chung
Vậy \(\Delta ABD=\Delta HBD\left(ch-gn\right)\)
c , câu này mik ko hiểu , bạn bỏ qua cho mik nhé ^^
d, Do \(\Delta DHC\)vuông tại H
\(\Rightarrow DH< DC\)(đường vuông góc ngắn hơn đường xiên)
Mà \(DA=DA\)\(\left(\Delta ABD=\Delta HBD\right)\)
Vì vậy \(DA< DC\)
Chúc bạn học tốt !
a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó:ΔABD=ΔEBD
b: \(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)
c: Xét ΔADI vuông tại A và ΔEDC vuông tại E có
DA=DE
\(\widehat{ADI}=\widehat{EDC}\)
Do đó:ΔADI=ΔEDC
Suy ra: AI=EC
Ta có: BA+AI=BI
BE+EC=BC
mà BA=BE
và AI=EC
nên BI=BC
hayΔBIC cân tại B
d: Ta có: AD=DE
mà DE<DC
nên AD<DC
a) Tam giác ABD và HBD có:
Góc A = góc H (=90 độ)
Góc ABD = HBD (BD là phân giác góc ABH)
Cạnh BD chung
=> Tam giác ABD = HBD (c.huyền-góc nhọn) (1)
b) Từ (1) => DA = DH
mà DH < DC (tam giác DHC cạnh góc vuông < cạnh huyền)
=> DA < DC
c) Tam giác ADI và tam giác HDC có:
Góc A = H (=90 độ)
Góc ADI = HDC (đối đỉnh)
Cạnh AD = HD (câu b)
=> Tam giác ADI = tam giác HDC (g-c-g) (2)
d) Từ (2) => DI = DC
=> Tam giác IDC cân tại D
a: Xét ΔBAM vuông tại A và ΔBDM vuông tại D có
BM chung
góc ABM=góc DBM
Do đó: ΔBAM=ΔBDM
=>BA=BD
b: XétΔABC vuông tại A và ΔDBE vuông tại D có
BA=BD
góc ABC chung
Do đo: ΔABC=ΔDBE
a) Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E
có: góc ABD = góc EBD (gt)
BD là cạnh chung
\(\Rightarrow\Delta ABD=\Delta EBD\left(ch-gn\right)\)
b) Xét tam giác ABC vuông tại A
có: \(AB^2+AC^2=BC^2\) ( py - ta - go)
thay số: \(6^2+8^2=BC^2\)
\(\Rightarrow BC^2=100\)
\(\Rightarrow BC=10cm\)
ta có: \(\Delta ABD=\Delta EBD\left(pa\right)\)
=> AB = EB = 6cm ( 2 cạnh tương ứng)
=> EB = 6cm
mà EB + EC = BC ( E thuộc BC )
thay sô: 6 cm + EC = 10 cm
EC = 10 cm - 6 cm
EC = 4 cm
c) ta có: \(\Delta ABD=\Delta EBD\left(pa\right)\)
=> AD = ED ( 2 cạnh tương ứng)
Xét tam giác ADI vuông tại A và tam giác EDC vuông tại E
có: góc ADI = góc EDC ( đối đỉnh)
AD = ED ( cmt)
\(\Rightarrow\Delta ADI=\Delta EDC\left(cgv-gn\right)\)
=> AI = EC ( 2 cạnh tương ứng)
Mà AB = BE ( tam giác ABD = tam giác EBD)
=> AI + AB = EC + BE
=> IB = CB
=> tam giác BIC cân tại B ( định lí tam giác cân)
d) ta có: AD = ED ( tam giác ABD = tam giác EBD) (1)
Xét tam giác EDC vuông tại E
có: ED < DC ( định lí cạnh huyền, góc nhọn) (2)
Từ (1); (2) => AD < DC
xin lỗi bn nha! mk ko bít kẻ hình trên này, nên mk ko kẻ cho bn đc đâu
a) Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E
có: góc ABD = góc EBD (gt)
BD là cạnh chung
⇒ΔABD=ΔEBD(ch−gn)⇒Δ���=Δ���(�ℎ−��)
b) Xét tam giác ABC vuông tại A
có: AB2+AC2=BC2��2+��2=��2 ( py - ta - go)
thay số: 62+82=BC262+82=��2
⇒BC2=100⇒��2=100
⇒BC=10cm⇒��=10��
ta có: ΔABD=ΔEBD(pa)Δ���=Δ���(��)
=> AB = EB = 6cm ( 2 cạnh tương ứng)
=> EB = 6cm
mà EB + EC = BC ( E thuộc BC )
thay sô: 6 cm + EC = 10 cm
EC = 10 cm - 6 cm
EC = 4 cm
c) ta có: ΔABD=ΔEBD(pa)Δ���=Δ���(��)
=> AD = ED ( 2 cạnh tương ứng)
Xét tam giác ADI vuông tại A và tam giác EDC vuông tại E
có: góc ADI = góc EDC ( đối đỉnh)
AD = ED ( cmt)
⇒ΔADI=ΔEDC(cgv−gn)⇒Δ���=Δ���(���−��)
=> AI = EC ( 2 cạnh tương ứng)
Mà AB = BE ( tam giác ABD = tam giác EBD)
=> AI + AB = EC + BE
=> IB = CB
=> tam giác BIC cân tại B ( định lí tam giác cân)
d) ta có: AD = ED ( tam giác ABD = tam giác EBD) (a)
Xét tam giác EDC vuông tại E
có: ED < DC ( định lí cạnh huyền, góc nhọn) (b)
Từ (a); (b) => AD < DC.
cre baji
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE
b: Xét ΔECB vuông tại E và ΔDBC vuông tại D có
BC chung
EC=DB
Do đó: ΔECB=ΔDBC
SUy ra: \(\widehat{ICB}=\widehat{IBC}\)
=>ΔIBC cân tại I
Xét ΔABI và ΔACI có
AB=AC
AI chung
BI=CI
Do đó: ΔABI=ΔACI
Suy ra: \(\widehat{BAI}=\widehat{CAI}\)
hay AI là tia phân giác của góc BAC
c: Vì AB=AC
và IB=IC
nên AI là đường trung trực của CB
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=5^2-3^2=16\)
hay AC=4(cm)
Vậy: AC=4cm
b) Xét ΔABD vuông tại A và ΔMBD vuông tại M có
BD chung
\(\widehat{ABD}=\widehat{MBD}\)(BD là tia phân giác của \(\widehat{ABM}\))
Do đó: ΔABD=ΔMBD(cạnh huyền-góc nhọn)
c) Xét ΔDMC vuông tại M có DC là cạnh huyền(DC là cạnh đối diện với \(\widehat{CMD}=90^0\))
nên DC là cạnh lớn nhất trong ΔDMC(Định lí)
\(\Leftrightarrow DC>DM\)(1)
Ta có: ΔABD=ΔMBD(cmt)
nên DA=DM(hai cạnh tương ứng)(2)
Từ (1) và (2) suy ra DA<DC
d) Xét ΔADI vuông tại A và ΔMDC vuông tại M có
DA=DM(cmt)
\(\widehat{ADI}=\widehat{MDC}\)(hai góc tương ứng)
Do đó: ΔADI=ΔMDC(cạnh góc vuông-góc nhọn kề)
Suy ra: DI=DC(hai cạnh tương ứng)
Xét ΔDIC có DI=DC(cmt)
nên ΔDIC cân tại D(Định nghĩa tam giác cân)