K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

Do đó: ΔABC\(\sim\)ΔHBA

b: ta có: ΔABC\(\sim\)ΔHBA

nên BA/BH=BC/BA

hay \(BA^2=BH\cdot BC\)

10 tháng 5 2022

a.Xét tam giác ABC và tam giác HBA, có:

^B: chung

^BAC = ^BHA = 90 độ

Vậy tam giác ABC đồng dạng tam giác HBA (g.g)

b.\(\rightarrow\dfrac{AB}{HB}=\dfrac{BC}{AB}\)

\(\Leftrightarrow AB^2=BH.BC\left(đfcm\right)\) (1)

c.Áp dụng định lý pitago \(\Rightarrow BC=\sqrt{6^2+10^2}=2\sqrt{34}\left(cm\right)\)

(1) \(\Leftrightarrow6^2=2\sqrt{34}BH\)

\(\Leftrightarrow BH=\dfrac{9\sqrt{34}}{17}\left(cm\right)\)

Áp dụng định lý pitago trong tam giác ABH \(\Rightarrow AH=\sqrt{6^2-\left(\dfrac{9\sqrt{34}}{17}\right)^2}=\dfrac{15\sqrt{34}}{17}\left(cm\right)\)

a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

BD là phân giác

=>DA/AB=DC/BC

=>DA/3=DC/5=(DA+DC)/(3+5)=8/8=1

=>DA=3cm; DC=5cm

b: Xet ΔABC vuông tại A và ΔHBA vuông tại H có

góc ABC chung

=>ΔABC đồng dạng với ΔHBA

=>BA/BH=BC/BA

=>BA^2=BH*BC

c: IH/IA=BH/BA

AD/DC=BA/BC

BH/AB=BA/BC

=>IH/IA=AD/DC

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

Xét ΔHAC vuông tại H và ΔABC vuông tại A có

góc C chung

=>ΔHAC đồng dạng với ΔABC

=>ΔHBA đồng dạng với ΔHAC
b: BC=căn 6^2+8^2=10cm

AH=6*8/10=4,8cm

d: ΔHBA đồng dạng với ΔHAC

=>HB/HA=HA/HC

=>HA^2=HB*HC

a: Xet ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

b: ΔABC vuông tại A có AH vuông góc BC

nên AB^2=BH*BC

ΔABC vuông tại A có AH vuông góc BC

nên AH^2=HB*HC

15 tháng 5 2023

giải rõ hơn được kh ạ

 

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có 

góc HBA chung

Do đó: ΔHBA\(\sim\)ΔABC

b: Xét ΔBAC có BD là phân giác

nên DA/DC=BA/BC(1)

Xét ΔBHA có BI là phân giác

nên IH/IA=BH/BA(2)

Ta có: ΔHBA\(\sim\)ΔABC

nên BA/BC=BH/BA(3)

Từ (1), (2) và (3) suy ra IH/IA=DA/DC

c: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

 

a) Xét ΔABH vuông tại H và ΔCAH vuông tại H có 

\(\widehat{ABH}=\widehat{CAH}\left(=90^0-\widehat{ACH}\right)\)

Do đó: ΔABH\(\sim\)ΔCAH(g-g)

b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

\(\Leftrightarrow\dfrac{1}{AH^2}=\dfrac{1}{36}+\dfrac{1}{64}=\dfrac{100}{2304}\)

hay AH=4,8(cm)

1 tháng 8 2021

em nào có nhu cầu bú lồn thì liên hệ anh nha

18 tháng 8 2021

?

 

18 tháng 8 2021

lần đầu ng

 

a) Xét ΔABH có BI là đường cao ứng với cạnh AH(gt)

nên \(\dfrac{IA}{IH}=\dfrac{BA}{BH}\)(Tính chất tia phân giác của tam giác)(1)

Xét ΔAHB vuông tại H và ΔCHA vuông tại H có

\(\widehat{BAH}=\widehat{ACH}\left(=90^0-\widehat{ABH}\right)\)

Do đó: ΔAHB\(\sim\)ΔCHA(g-g)

Suy ra: \(\dfrac{AH}{CH}=\dfrac{AB}{AC}=\dfrac{HB}{HA}\)(Các cặp cạnh tương ứng tỉ lệ)

\(\Leftrightarrow\dfrac{AB}{HB}=\dfrac{AC}{HA}\)(2)

Từ (1) và (2) suy ra \(\dfrac{IA}{IH}=\dfrac{AC}{HA}\)(đpcm)

19 tháng 3 2021

Cảm ơn ạ.