Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.Xét ΔHBA và ΔABC có:
góc AHB=góc BAC=90o
Góc B chung
=> ΔABC đồng dạng ΔHBA (g.g)
=>\(\dfrac{BA}{BH}=\dfrac{BC}{BA}\)\(\Rightarrow BA.BA=BH.BC\)
2. Xét ΔHBI và ΔABE có:
góc ABE=IBH (Vì BE là tia phân giác của góc B, I nằm trên BE)
góc BAE=góc IHB=90o
=>ΔHBI đồng dạng ΔABE (g.g)
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng vơi ΔHBA
=>AC/HA=AB/HB=BC/AB
=>AB^2=BH*BC; AC*AB=AH*BC
b: Xét ΔABC vuông tại A và ΔHAC vuông tại H có
góc C chung
=>ΔABC đồng dạngvới ΔHAC
=>CA/CH=CB/CA
=>CA^2=CH*CB
d: AI/IC=AB/BC
KH/AH=BH/BA
mà AB/BC=BH/BA
nên AI/IC=KH/AH
a, Xét tam giác ABC và tam giác HBA ta có
^B _ chung
^BAC = ^BHA = 900
Vậy tam giác ABC ~ tam giác HBA (g.g)
b, Theo định lí Pytago tam giác ABC vuông tại A
\(BC=\sqrt{AB^2+AC^2}=15cm\)
\(\dfrac{AC}{AH}=\dfrac{BC}{AB}\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{36}{5}cm\)
\(\dfrac{AB}{HB}=\dfrac{BC}{AB}\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{27}{5}cm\)
=> CH = 48/5 cm
c, \(\dfrac{S_{ACD}}{S_{HCE}}=\left(\dfrac{AC}{HC}\right)^2=\dfrac{25}{16}\)
a: Xet ΔABC và ΔHBA có
góc B chung
góc BAC=góc BHA
=>ΔABC đồg dạng với ΔHBA
b: ΔABC vuông tại A mà AH là đường cao
nên HA^2=HB*HC
c: Xet ΔCAD vuông tại A và ΔCHE vuông tai H co
góc ACD=góc HCE
=>ΔCAD đồng dạng với ΔCHE
=>\(\dfrac{S_{CAD}}{S_{CHE}}=\left(\dfrac{CA}{CH}\right)^2=\left(\dfrac{8}{6,4}\right)^2=\left(\dfrac{5}{4}\right)^2=\dfrac{25}{16}\)
a: BC=căn 6^2+8^2=10cm
b: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
c: ΔABC đồng dạng với ΔHBA
=>BA/BH=BC/BA
=>BA^2=BH*BC
BH=AB^2/BC=6^2/10=3,6cm
CH=10-3,6=6,4cm
d: AD là phân giác
=>DB/AB=DC/AC
=>DB/3=DC/4=10/7
=>DB=30/7cm
a: Xet ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
b: ΔABC vuông tại A có AH vuông góc BC
nên AB^2=BH*BC
ΔABC vuông tại A có AH vuông góc BC
nên AH^2=HB*HC
giải rõ hơn được kh ạ