K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: HM là đường trung bình của ΔEBC

=>EH=HB

KM là đường trug bình của ΔFBC

=>FK=KC

ΔAHM có EO//HM

=>AE/AH=AO/AM

ΔAKM có KM//FO

nên AF/AK=AO/AM

=>AE/AH=AF/AK

=>EF//HK

b: ΔAHM có EO//HM

=>MA/MO=HA/HE

=>MA/MO=HA/HB

ΔAKM có FO//KM

=>MA/MO=KA/KF=KA/KC

=>HA/HB=KA/KC

=>HK//BC

=>EF//BC

a: HM là đường trung bình của ΔEBC

=>EH=HB

KM là đường trug bình của ΔFBC

=>FK=KC

ΔAHM có EO//HM

=>AE/AH=AO/AM

ΔAKM có KM//FO

nên AF/AK=AO/AM

=>AE/AH=AF/AK

=>EF//HK

b: ΔAHM có EO//HM

=>MA/MO=HA/HE

=>MA/MO=HA/HB

ΔAKM có FO//KM

=>MA/MO=KA/KF=KA/KC

=>HA/HB=KA/KC

=>HK//BC

=>EF//BC

a: HM là đường trung bình của ΔEBC

=>EH=HB

KM là đường trug bình của ΔFBC

=>FK=KC

ΔAHM có EO//HM

=>AE/AH=AO/AM

ΔAKM có KM//FO

nên AF/AK=AO/AM

=>AE/AH=AF/AK

=>EF//HK

b: ΔAHM có EO//HM

=>MA/MO=HA/HE

=>MA/MO=HA/HB

ΔAKM có FO//KM

=>MA/MO=KA/KF=KA/KC

=>HA/HB=KA/KC

=>HK//BC

=>EF//BC

2:

a: HM là đường trung bình của ΔEBC

=>EH=HB

KM là đường trug bình của ΔFBC

=>FK=KC

ΔAHM có EO//HM

=>AE/AH=AO/AM

ΔAKM có KM//FO

nên AF/AK=AO/AM

=>AE/AH=AF/AK

=>EF//HK

b: ΔAHM có EO//HM

=>MA/MO=HA/HE

=>MA/MO=HA/HB

ΔAKM có FO//KM

=>MA/MO=KA/KF=KA/KC

=>HA/HB=KA/KC

=>HK//BC

=>EF//BC

a: HM là đường trung bình của ΔEBC

=>EH=HB

KM là đường trug bình của ΔFBC

=>FK=KC

ΔAHM có EO//HM

=>AE/AH=AO/AM

ΔAKM có KM//FO

nên AF/AK=AO/AM

=>AE/AH=AF/AK

=>EF//HK

b: ΔAHM có EO//HM

=>MA/MO=HA/HE

=>MA/MO=HA/HB

ΔAKM có FO//KM

=>MA/MO=KA/KF=KA/KC

=>HA/HB=KA/KC

=>HK//BC

=>EF//BC

a: HM là đường trung bình của ΔEBC

=>EH=HB

KM là đường trug bình của ΔFBC

=>FK=KC

ΔAHM có EO//HM

=>AE/AH=AO/AM

ΔAKM có KM//FO

nên AF/AK=AO/AM

=>AE/AH=AF/AK

=>EF//HK

b: ΔAHM có EO//HM

=>MA/MO=HA/HE

=>MA/MO=HA/HB

ΔAKM có FO//KM

=>MA/MO=KA/KF=KA/KC

=>HA/HB=KA/KC

=>HK//BC

=>EF//BC

a: Xét ΔOAD và ΔOMK có

\(\widehat{OAD}=\widehat{OMK}\)(hai góc so le trong, AD//MK)

\(\widehat{AOD}=\widehat{MOK}\)

Do đó: ΔOAD đồng dạng với ΔOMK

=>\(\dfrac{OA}{OM}=\dfrac{OD}{OK}\)

=>\(OA\cdot OK=OM\cdot OD\)

b: Xét ΔABC có AD là phân giác

nên \(\dfrac{BD}{AB}=\dfrac{CD}{CA}\)

=>\(\dfrac{BD}{5}=\dfrac{CD}{10}\)

=>\(\dfrac{BD}{1}=\dfrac{CD}{2}\)

mà BD+CD=BC=12

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{1}=\dfrac{CD}{2}=\dfrac{BD+CD}{1+2}=\dfrac{12}{3}=4\)

=>\(BD=4\left(cm\right);CD=8\left(cm\right)\)

c: ME//AD

=>\(\widehat{AEK}=\widehat{DAC}\)(hai góc so le trong)(1)

KM//AD

=>\(\widehat{AKE}=\widehat{BAD}\)(hai góc đồng vị)(2)

AD là phân giác của góc BAC

=>\(\widehat{BAD}=\widehat{CAD}\left(3\right)\)

Từ (1),(2),(3) suy ra \(\widehat{AEK}=\widehat{AKE}\)

=>AE=AK

Xét ΔCAD có EM//AD

nên \(\dfrac{CE}{CA}=\dfrac{CM}{CD}\)

=>\(\dfrac{CE}{CM}=\dfrac{CA}{CD}\)

mà \(\dfrac{CA}{CD}=\dfrac{BA}{BD}\)

nên \(\dfrac{CE}{CM}=\dfrac{BA}{BD}\)

=>\(\dfrac{AB}{BD}=\dfrac{EC}{CM}\)

=>\(\dfrac{AB}{EC}=\dfrac{BD}{CM}\)(ĐPCM)