K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2020

Ôn tập Tam giác

a/ Có: \(\left\{{}\begin{matrix}BK\perp d\\AC\perp d\end{matrix}\right.\) => BK // AC

=> \(\widehat{KBC}=\widehat{ACB}\) (2 góc so le trong) (1)

Lại có: \(\widehat{ABC}=\widehat{ACB}\) (ΔABC cân tại A) (2)

Từ (1) và (2) => \(\widehat{KBC}=\widehat{ABC}\)

Xét 2 tam giác vuông ΔHBC và ΔKBC ta có:

Cạnh huyền BC chung

\(\widehat{KBC}=\widehat{ABC}\)

=> ΔHBC = ΔKBC (c.h - g.n)

=> CH = CK (2 cạnh tương ứng)

Bài 1: Cho tam giác ABC ( BC > AB). Tia phân giác của góc ABC cắt cạnh AC tại điểm E. Trên cạnh BC lấy điểm D sao cho BD = AB.a) Chứng minh: tam giác EAB = tam giác EDB.b) Kéo dài BA và DE cắt nhau ở K. Chứng minh: DK = AC.c) Kẻ CH vuông góc với BE kéo dài tại H. Chứng minh: CH // ADd) Chứng minh ba điểm C, H, K thẳng hàng.Bài 2: Cho tam giác ABC (BC > AB). Tia phân giác của góc ABC cắt AC tại D. Trên BC lấy điểm E sao...
Đọc tiếp

Bài 1: Cho tam giác ABC ( BC > AB). Tia phân giác của góc ABC cắt cạnh AC tại điểm E. Trên cạnh BC lấy điểm D sao cho BD = AB.

a) Chứng minh: tam giác EAB = tam giác EDB.

b) Kéo dài BA và DE cắt nhau ở K. Chứng minh: DK = AC.

c) Kẻ CH vuông góc với BE kéo dài tại H. Chứng minh: CH // AD

d) Chứng minh ba điểm C, H, K thẳng hàng.

Bài 2: Cho tam giác ABC (BC > AB). Tia phân giác của góc ABC cắt AC tại D. Trên BC lấy điểm E sao cho BE = AB.

a) Chứng minh: AD = DE.

b) BA và ED kéo dài cắt nhau ở I. Chứng minh: góc BID = góc BCD.

c) Chứng minh: BD là đường trung trực của đoạn thẳng IC.

d) Từ E kẻ đường thẳng song song với BD cắt AB kéo dài ở K. Chứng minh: tam giác AEK vuông. Tam giác ABC cần thêm điều kiện gì để AE = EK?

CÁC BẠN GIÚP MÌNH VỚI!!! KO CẦN VẼ HÌNH ĐÂU!!! MÌNH ĐANG CẦN GẤP LẮM!!! AI NHANH NHẤT MÌNH TICK CHO!!!

0
1 tháng 1 2016

A B C d H K

Xét tam giác ABH và tam giác ACK có

CKA=BHA=90 độ

BA=CA(gt)

Vậy tam giác ABH=tam giác ACK(cạnh huyền góc nhọn)

tick nha m.n

1 tháng 1 2016

chưa ai trả lời được hết à

 

28 tháng 4 2019

tam giác ABC cân tại A (gt) và AH là đường cao do AH _|_ BC (gt)

=> AH đồng thời là đường phân giác của góc A  (đl)

=> góc BAH = góc CAH (đn)

có IH // AC (gt) => góc IHA  = góc CAH (2 góc slt)

=> góc BAH  = góc IHA (tcbc)

=> tam giác HAI cân tại I (đl)

22 tháng 6 2020

1) d) Ta có: \(\Delta\)KHC cân tại H 

=> HK = CK 

=> AB = AC = 2Ck = 2HK 

=> AB = 2 HK 

Ta có: 

Qua H kẻ đường thẳng // với HA cắt AB tại T 

Xét \(\Delta\)KHA và \(\Delta\)ATK có: 

AK chung 

^HKA = ^TAK ( so le trong ) 

^HAK = ^TKA ( so le trong ) 

=> \(\Delta\)KHA = \(\Delta\)ATK 

=> AT = HK và KT = HA 

=> AB = 2HK = 2AT

Khi đó: AH + BK = KT + BK > BT = AB + AT 

=> 2 ( AH + BK ) > 2 AB + 2AT = 2AB + AB = 3AB 

Vậy 2 ( AH + BK) > 3AB

23 tháng 6 2020

2)  M I D E A P Q B C H

a)

  • Xét \(\Delta\)ADC và \(\Delta\)ABE có: 

AD = AB ( \(\Delta\)ADB cân tại A ) 

AC = AE ( \(\Delta\)ACE cân tại E) 

^DAC = ^BAE ( vì ^DAC = ^DAB + ^BAC = 90o + ^BAC  ; ^BAE = ^BAC + ^CAE = ^BAC + 90o ) 

=> \(\Delta\)ADC = \(\Delta\)ABE (1)

=> CD = EB 

  •  Gọi P; Q lần lượt là giao điểm của DC và BA và BE

(1) => ^ADC = ^ABE => ^ADP = ^PBQ (2)

Xét \(\Delta\)APD và \(\Delta\)PQB 

có: ^APD + ^ADP + ^PAD = ^PQB + ^PBQ + ^QPB  = 180 độ ( tổng 3 góc  trong 1 tam giác ) 

mà ^ADP = ^PBQ (theo (2)) ; ^APD = ^QPB ( đối đỉnh) 

=> ^PQB = ^PAD = ^BAD = 90 độ  ( \(\Delta\)ABD vuông ) 

=> DC vuông BE 

b) Trên mặt phẳng bờ DE không chứa A, qua D kẻ tia Dx // AE. Trên Dx lấy điểm M sao cho DM = AE 

Gọi giao điểm của DE và MA là I

Dễ dàng chứng minh được: \(\Delta\)DIM = \(\Delta\)EIA  (3) 

=> DM = AE = AC 

Lại có: ^MDA + ^DAE = ^MDE + ^EDA + ^DAE = ^DEA + ^EDA + ^DAE = 180 độ 

mà ^DAE + ^BAC = 180 độ 

=> ^MDA = ^BAC 

Xét \(\Delta\)ABC và \(\Delta\)DAM có: AB = DA ; AC = DM ; ^BAC = ^ADM 

=> \(\Delta\)ABC = \(\Delta\)DAM 

=> ^DAM = ^ABC 

=> ^DAM + ^DAB + ^BAH = ^ABC + 90o + ^BAH = 180 độ 

=> M; I; A; H thẳng hàng 

=> AH cắt DE tại I 

(3) => ID = IE => I là trung điểm của DE 

Do vậy AH đi qua trung điểm của DE 

4 tháng 3 2016

a )   

xét 2 tam giác ABD và tam giác BHD có : 

^B1 = ^ B2( BD là tia phân giác của ^ B)

BD cạnh chung 

suy ra: tam giác ABD = tam giác BHD ( cạnh huyền - góc nhọn )

suy ra : AB = BH ( 2 cạnh tương ứng ) 

b) 

trong tam giác vuông BHD có :

^ H = 90 độ

SUY RA ^ B2 +^D = 90 độ 

suy ra : ^B2 = ^ D = 45 ĐỘ 

MÀ ^ BDH = 45 độ 

suy ra : ^ BDK = 45 độ ( góc D chung)  

vậy ^ BDK = 45 độ 

mình làm vậy đó nếu đúng thì cho minh 1 k , nếu sai thì thông cảm nha 

29 tháng 2 2016

B A C K E D H