K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2020

P(x) chia hết cho x - 2 

=> P(2) = 0 

=> \(2^4+m.2^3-55.2^2+2n-156=0\)<=> 8m + 2n = 360 => 4m + n = 180

P(x) chia hết cho x - 3 

=> P(3) = 0 

=> \(3^4+m.3^3-55.3^2+3n-156=0\)<=> 27m + 3n = 570 => 9m + n = 190

=> ( 9m + n ) - ( 4m+ n ) = 190 - 180 

=> 5m = 10 

=> m = 2 

=> 4.2 + n = 180 => n = 172

Vậy P(x)  = \(x^4+2x^3-55x^2+172x-156\)

13 tháng 8 2020

P(x) chia hết cho x-2<=>P(2)=24 + 8m - 220 +2n -  156 =0  (1)

P(x) chia hết cho x-3<= >P(3)=34 + 27m - 495 + 3n -156=0 (2)

Từ (1) và (2) suy ra:

{16+8m-220+2n-156=0   <=>8m+2n=360   

{81+27m-495+3n-156=0 <=>27m+3n=570 

Giair hệ phương trình ta được

m=2 và n=172

thay m,n vào P(x), ta được:

P(x)=x4+2x3-55x2+172x-156

<=>P(x)=(x-2)(x-3)(x2+7x+6)<=>P(x)=0

<=>[x-2=0              <=>x=2

      [x-3=0              <=>x=3

      [x2+7x+6=0      <=>x=-7+3√17 / 2 hoặc x=7-3√17 / 2

x^3+3x-5 chia hết cho x^2+2

=>x^3+2x+x-5 chia hết cho x^2+2

=>x-5 chia hết cho x^2+2

=>x^2-25 chia hết cho x^2+2

=>x^2+2-27 chia hết cho x^2+2

=>x^2+2 thuộc Ư(-27)

=>x^2+2 thuộc {3;9;27}

=>\(x\in\left\{1;-1;5;-5\right\}\)

a) f(x) = 10x² - 7x - 5 = 10x² - 15x + 8x - 12 + 7 = 5x(2x-3) + 4(2x-3) + 7 
f(x) chia hết cho 2x-3 khi và chỉ khi 7 chia hết cho 2x-3, vì 7 là số nguyên tố, nên chi có các trường hợp: 
TH1: 2x-3 = -1 <=> x = 1 
TH2: 2x-3 = 1 <=> x = 2 
TH3: 2x-3 = -7 <=> x = -2 
TH4: 2x-3 = 7 <=> x = 5 
Vây có 4 giá trị nguyên của x là {-2, 1, 2, 5}

a) f(x) = 10x² - 7x - 5 = 10x² - 15x + 8x - 12 + 7 = 5x(2x-3) + 4(2x-3) + 7 
f(x) chia hết cho 2x-3 khi và chỉ khi 7 chia hết cho 2x-3, vì 7 là số nguyên tố, nên chi có các trường hợp: 
TH1: 2x-3 = -1 <=> x = 1 
TH2: 2x-3 = 1 <=> x = 2 
TH3: 2x-3 = -7 <=> x = -2 
TH4: 2x-3 = 7 <=> x = 5 
Vây có 4 giá trị nguyên của x là {-2, 1, 2, 5} 

b) g(x) = x³ - 4x² + 5x - 1 = x³ - 3x² - x² + 3x + 2x - 6 + 5 = x²(x-3) - x(x-3) + 2(x-3) + 5 
g(x) chia hết cho x-3 khi và chỉ khi 5 chia hết cho x-3 (5 là số nguyên tố nên chỉ xét các trường hợp) 
TH1: x-3 = -5 <=> x = -2 
TH2: x-3 = -1 <=> x = 2 
TH3: x-3 = 1 <=> x = 4 
TH4: x-3 = 5 <=> x = 8 
Vậy có giá trị nguyên của x thỏa là {-1, 2, 4, 8}