Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Q\left(2\right)=4a+2b+c\)
\(Q\left(-1\right)=a-b+c\)
\(Q\left(2\right)+Q\left(-1\right)=5a+b+2c=0\)
\(\Leftrightarrow Q\left(2\right)=-Q\left(-1\right)\)
\(Q\left(2\right).Q\left(-1\right)=-Q\left(-1\right)^2\le0\)
Bài 1:
\(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\)
\(\Leftrightarrow a^2x^2+a^2y^2+b^2x^2+b^2y^2=a^2x^2+2abxy+b^2y^2\)
\(\Leftrightarrow a^2y^2+b^2x^2-2abxy=0\)
\(\Leftrightarrow\left(ay-bx\right)^2=0\)
\(\Leftrightarrow ay=bx\)
\(\Leftrightarrow\dfrac{a}{x}=\dfrac{b}{y}\)
\(\Rightarrowđpcm\)
Bài 2:
Ta có: \(VT=\left(5a-3b+8c\right)\left(5a-3b-8c\right)\)
\(=\left(5a-3b\right)^2-64c^2\)
\(=25a^2-30ab+9b^2-64c^2\)
\(=25a^2-30ab+9b^2-16a^2+16b^2\left(a^2-b^2=4c^2\right)\)
\(=9a^2-30ab+25b^2=\left(3a-5b\right)^2=VP\)
\(\Rightarrowđpcm\)
A = 4acx + 4bcx + 4ax + 4bx ( đã sửa '-' )
= 4x( ac + bc + a + b )
= 4x[ c( a + b ) + ( a + b ) ]
= 4x( a + b )( c + 1 )
B = ax - bx + cx - 3a + 3b - 3c
= x( a - b + c ) - 3( a - b + c )
= ( a - b + c )( x - 3 )
C = 2ax - bx + 3cx - 2a + b - 3c
= x( 2a - b + 3c ) - ( 2a - b + 3c )
= ( 2a - b + 3c )( x - 1 )
D = ax - bx - 2cx - 2a + 2b + 4c
= x( a - b - 2c ) - 2( a - b - 2c )
= ( a - b - 2c )( x - 2 )
E = 3ax2 + 3bx2 + ax + bx + 5a + 5b
= 3x2( a + b ) + x( a + b ) + 5( a + b )
= ( a + b )( 3x2 + x + 5 )
F = ax2 - bx2 - 2ax + 2bx - 3a + 3b
= x2( a - b ) - 2x( a - b ) - 3( a - b )
= ( a - b )( x2 - 2x - 3 )
= ( a - b )( x2 + x - 3x - 3 )
= ( a - b )[ x( x + 1 ) - 3( x + 1 ) ]
= ( a - b )( x + 1 )( x - 3 )
Ta có: \(P\left(1\right)=a+b+c\)
và \(P\left(3\right)=9a+3b+c\)
\(\Rightarrow P\left(1\right)+P\left(3\right)=10a+4b+2c=0\)
\(\Leftrightarrow5a+2b+c=0\)
Suy ra \(P\left(1\right)\)và \(P\left(3\right)\)là hai số đối nhau.
\(\Rightarrow P\left(1\right).P\left(3\right)\le0\)
(Dấu "="\(\Leftrightarrow a+b+c=9a+3b+c=0\))
Ta có: \(P\left(1\right)=a+b+c;P\left(3\right)=9a+3b+c\)
\(\Rightarrow F\left(x\right)=P\left(1\right).P\left(3\right)=\left(a+b+c\right)\left(9a+3b+c\right)\)
Ta sẽ chứng minh \(F\left(x\right)\le\left(5a+2b+c\right)^2=0\)(*)
Thật vậy, ta cần chứng minh: \(\left(5a+2b+c\right)^2-\left(a+b+c\right)\left(9a+3b+c\right)\ge0\) (1)
Có: \(VT=16a^2+8ab+b^2=\left(4a\right)^2+2.4a.b+b^2=\left(4a+b\right)^2\ge0\)
Do đó (1) đúng nên (*) đúng hay ta có đpcm.
P/s: Lâu rồi ko làm dang này nên ko chắc đâu nha.... vả lại khai triển bài này rối quá chả biết có làm sai gì ko, chưa check lại đâu
a)Ta có: a^2 + b^2 + c^2 = ab + bc + ca
<=> 2.a^2 + 2.b^2 + 2.c^2 = 2.ab + 2.bc + 2.ca
<=> ( a^2 - 2ab + b^2 ) + ( b^2 - 2bc +c^2 ) + ( c^2 - 2ac + a^2 ) =0
<=> (a-b)^2 + (b-c)^2 + (c -a)^2 =0 (1)
Vì (a-b)^2 ; (b-c)^2 ; (c -a)^2 ≧ 0 với mọi a,b,c.
=> (a-b)^2 + (b-c)^2 + (c -a)^2 ≧ 0 (2)
Từ (1) và (2) khẳng định dấu "=" khi:
a - b = 0; b - c = 0 ; c - a = 0 => a=b=c
Vậy a=b=c.
A = (5a – 3b + 8c)(5a – 3b –8c)
= (5a –3b)² – (8c)²
= (25a² – 30ab +9b²) – 64c²
Mà theo đề thì 4c² = a² –b²
Nên ta suy ra:
A = (25a² – 30ab +9b²) – 16(a² –b²)
= 9a² –30ab +25b²
= (3a –5b)²
\(a^2+b^2+c^2-ab-bc-ca=0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Rightarrow a=b=c\)
a) \(P\left(-1\right)=a\left(-1\right)^2+b\left(-1\right)+c=a-b+c\)
\(P\left(-2\right)=a\left(-2\right)^2+b\left(-2\right)+c=4a-2b+c\)
b) \(P\left(-1\right)+P\left(-2\right)=\left(a-b+c\right)+\left(4a-2b+c\right)=5a-3b+2c\)
\(\Rightarrow P\left(-1\right)=-P\left(-2\right)\)
Do đó \(P\left(-1\right)\) . \(P\left(-2\right)=-\left[P\left(-2\right)^2\right]\le0\)