Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(P\left(-1\right)=a\left(-1\right)^2+b\left(-1\right)+c=a-b+c\)
\(P\left(-2\right)=a\left(-2\right)^2+b\left(-2\right)+c=4a-2b+c\)
b) \(P\left(-1\right)+P\left(-2\right)=\left(a-b+c\right)+\left(4a-2b+c\right)=5a-3b+2c\)
\(\Rightarrow P\left(-1\right)=-P\left(-2\right)\)
Do đó \(P\left(-1\right)\) . \(P\left(-2\right)=-\left[P\left(-2\right)^2\right]\le0\)
\(5a^2+5b^2+8ab-2a+2b+2=0\)
\(\Leftrightarrow4a^2+4b^2+8ab+a^2-2a+1+b^2-2b+1=0\)
\(\Leftrightarrow\left(2a+2b\right)^2+\left(a-1\right)^2+\left(b+1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}2a+2b=0\\a-1=0\\b+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}a\cdot1+2\left(-1\right)=0\left(tm\right)\\a=1\\b=-1\end{cases}}}\)
Thay a, b vào B ta được :
\(B=\left(1-1\right)^{2018}+\left(1-2\right)^{2019}+\left(-1+1\right)^{2020}\)
\(B=0^{2018}+\left(-1\right)^{2019}+0^{2020}\)
\(B=-1\)
Từ a+b+c=6 \(\Rightarrow\)a+b=6-c
Ta có: ab+bc+ac=9\(\Leftrightarrow\)ab+c(a+b)=9
\(\Leftrightarrow\)ab=9-c(a+b)
Mà a+b=6-c (cmt)
\(\Rightarrow\)ab=9-c(6-c)
\(\Rightarrow\)ab=9-6c+c2
Ta có: (b-a)2\(\ge\)0 \(\forall\)b, c
\(\Rightarrow\)b2+a2-2ab\(\ge\)0
\(\Rightarrow\)(b+a)2-4ab\(\ge\)0
\(\Rightarrow\)(a+b)2\(\ge\)4ab
Mà a+b=6-c (cmt)
ab= 9-6c+c2 (cmt)
\(\Rightarrow\)(6-c)2\(\ge\)4(9-6c+c2)
\(\Rightarrow\)36+c2-12c\(\ge\)36-24c+4c2
\(\Rightarrow\)36+c2-12c-36+24c-4c2\(\ge\)0
\(\Rightarrow\)-3c2+12c\(\ge\)0
\(\Rightarrow\)3c2-12c\(\le\)0
\(\Rightarrow\)3c(c-4)\(\le\)0
\(\Rightarrow\)c(c-4)\(\le\)0
\(\Rightarrow\hept{\begin{cases}c\ge0\\c-4\le0\end{cases}}\)hoặc\(\hept{\begin{cases}c\le0\\c-4\ge0\end{cases}}\)
*\(\hept{\begin{cases}c\ge0\\c-4\le0\end{cases}\Leftrightarrow\hept{\begin{cases}c\ge0\\c\le4\end{cases}\Leftrightarrow}0\le c\le4}\)
*
Bài 3:
a: \(n\left(2n-3\right)-2n\left(n+1\right)\)
\(=2n^2-3n-2n^2-2n\)
=-5n chia hết cho 5
b: \(\left(n-1\right)\left(n+4\right)-\left(n-4\right)\left(n+1\right)\)
\(=n^2+4n-n-4-\left(n^2+n-4n-4\right)\)
\(=n^2+3n-4-\left(n^2-3n-4\right)\)
\(=6n⋮6\)
a) a3+b3+a2c+b2c-abc
= (a+b)(a2-ab+b2)+c(a2+b2)-abc
=(a+b) [ (a+b)2-3ab]+c.[(a+b)2-2ab]-abc
=(a+b)(a+b)2-3ab(a+b)+c(a+b)2-3abc
=(a+b)2(a+b+c)-3ab(a+b+c)
=(a+b)2.0-3ab.0
=0
b) ax+ay+2x+2y+4
=a(x+y)+2(x+y)+4
=(x+y)(a+2)+4
=(a-2)(a+2)+4
=a2-4+4
=a2
c) A=1+x+x2+...+x49=>Ax=x+x2+x3+...+x50
- A=1+x+x2+...+x49
---> Ax-A=x50-1
d)(a+b)(a+c)+(c+a)(c+b)
=a2+ac+ab+bc+c2+bc+ac+ab
=a2+c2+2ac+2ab+2bc
=2b2+2bc+2ac+2ab
=2b(b+c)+2a(b+c)
=2b(b+c)(b+a)
Đây là bất đẳng thức Bunhia Cốpxki bạn, lên mạng tra cách giải là đc!
\(a)\)\(\left(a+b+c+d\right)\left(a-b-c+d\right)=\left(a-b+c-d\right)\left(a+b-c-d\right)\)
\(\Leftrightarrow\)\(\frac{a+b+c+d}{a-b+c-d}=\frac{a+b-c-d}{a-b-c+d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a+b+c+d}{a-b+c-d}=\frac{a+b-c-d}{a-b-c+d}=\frac{a+b+c+d+a+b-c-d}{a-b+c-d+a-b-c+d}=\frac{2\left(a+b\right)}{2\left(a-b\right)}=\frac{a+b}{a-b}\) \(\left(1\right)\)
Lại có :
\(\frac{a+b+c+d}{a-b+c-d}=\frac{a+b-c-d}{a-b-c+d}=\frac{a+b+c+d-a-b+c+d}{a-b+c-d-a+b+c-d}=\frac{2\left(c+d\right)}{2\left(c-d\right)}=\frac{c+d}{c-d}\) \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)\(\Leftrightarrow\)\(\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{a+b+a-b}{c+d+c-d}=\frac{2a}{2c}=\frac{a}{c}\) \(\left(3\right)\)
Lại có :
\(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{a+b-a+b}{c+d-c+d}=\frac{2b}{2d}=\frac{b}{d}\) \(\left(4\right)\)
Từ \(\left(3\right)\) và \(\left(4\right)\) suy ra \(\frac{a}{c}=\frac{b}{d}\) ( đpcm )
Chúc bạn học tốt ~
\(b)\)\(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow\)\(a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\)\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Leftrightarrow\)\(a^2+b^2+c^2-ab-bc-ca=0\) ( vì \(a+b+c=0\) )
\(\Leftrightarrow\)\(2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\)\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\)\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow\)\(\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Leftrightarrow}a=b=c}\)
Vậy ...
Chúc bạn học tốt ~
Ta có: \(x^2-y+\frac{1}{4}=y^2-x+\frac{1}{4}=0\)
\(\Rightarrow\left(x^2-x+\frac{1}{4}\right)+\left(y^2-y+\frac{1}{4}\right)=0\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\y-\frac{1}{2}=0\end{cases}\Rightarrow}x=y=\frac{1}{2}\)
Vậy \(x=y=\frac{1}{2}\)
Ta có: \(P\left(1\right)=a+b+c\)
và \(P\left(3\right)=9a+3b+c\)
\(\Rightarrow P\left(1\right)+P\left(3\right)=10a+4b+2c=0\)
\(\Leftrightarrow5a+2b+c=0\)
Suy ra \(P\left(1\right)\)và \(P\left(3\right)\)là hai số đối nhau.
\(\Rightarrow P\left(1\right).P\left(3\right)\le0\)
(Dấu "="\(\Leftrightarrow a+b+c=9a+3b+c=0\))
Ta có: \(P\left(1\right)=a+b+c;P\left(3\right)=9a+3b+c\)
\(\Rightarrow F\left(x\right)=P\left(1\right).P\left(3\right)=\left(a+b+c\right)\left(9a+3b+c\right)\)
Ta sẽ chứng minh \(F\left(x\right)\le\left(5a+2b+c\right)^2=0\)(*)
Thật vậy, ta cần chứng minh: \(\left(5a+2b+c\right)^2-\left(a+b+c\right)\left(9a+3b+c\right)\ge0\) (1)
Có: \(VT=16a^2+8ab+b^2=\left(4a\right)^2+2.4a.b+b^2=\left(4a+b\right)^2\ge0\)
Do đó (1) đúng nên (*) đúng hay ta có đpcm.
P/s: Lâu rồi ko làm dang này nên ko chắc đâu nha.... vả lại khai triển bài này rối quá chả biết có làm sai gì ko, chưa check lại đâu