Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk chỉ cần thay x bằng 1 vào đó rồi tính đc P bằng 0 thì suy ra x bằng 1 là nghiệm của đa thức P là xog
a) Thay x = 1 vào đa thức F(x) ta được: F(1) = a.12 + b.1 + c F(1) = a + b + c F(1) = 0. Ta có F(x) = 0 tại x = 1 nên x = 1 là một nghiệm của F(x)
a: f(1)=a+b+c=0
=>x=1 là nghiệm
b: Vì 5-6+1=0
nên f(x)=5x^2-6x+1 có một nghiệm là x=1
a: f(1)=0
=>a+b+c=0(luôn đúng)
b: f(x)=0
=>5x^2-6x+1=0
=>(x-1)(5x-1)=0
=>x=1/5 hoặc x=1
`f(x) = (x-1)(x+2) = 0`.
`=>` \(\left[ \begin{array}{l}x=1\\x=-2\end{array} \right.\)
Với `x = 1 => g(x) = 1 + a + b + 2 = 0`.
`<=> a + b = -3`.
Với `x = -2 => g(x) = -8 + 4a - 2b + 2 = 0`.
`<=> 4a - 2b = 6`.
`<=> 2a - b = 6`.
`=> ( a + b) + (2a - b) = -3 + 6`.
`=> 3a = 3`.
`=> a = 1.`
`=> b = -4`.
Vậy `(a,b) = {(1, -4)}`.
\(a+c=b\Rightarrow a-b+c=0\)
Ta thấy \(f\left(-1\right)=a-b+c=0\)Vậy x = -1 là 1 nghiệm của f(x)
Với \(a\ne0\)thì f(x) là 1 đa thức bậc hai và có nhiều nhất là 2 nghiệm, 1 nghiệm = 1 theo đề bài thì nghiệm còn lại như chứng minh trên là: -1.
a) Thay x = 1 vào đa thức F(x), ta có:
F(1) = a.12 + b.1 + c = a+ b + c
Mà a + b + c = 0
Do đó, F(1) = 0. Như vậy x = 1 là một nghiệm của F(x)
b) Ta có: Đa thức 2x2 – 5x + 3 có a = 2 ; b = -5; c = 3 nên a + b + c = 2 + (-5) + 3 = 0
Do đó, đa thức có 1 nghiệm là x = 1