Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{5}{5.8.11}+\frac{5}{8.11.14}+...+\frac{5}{302.305.308}\)
\(\Rightarrow\frac{6}{5}B=\frac{6}{5.8.11}+\frac{6}{8.11.14}+...+\frac{6}{302.305.308}\)
\(=\frac{11-5}{5.8.11}+\frac{14-8}{8.11.14}+...+\frac{308-302}{302.305.308}\)
\(=\frac{1}{5.8}-\frac{1}{8.11}+\frac{1}{8.11}-\frac{1}{8.11}+...+\frac{1}{302.305}-\frac{1}{305.308}\)
\(=\frac{1}{5.8}-\frac{1}{305.308}< \frac{1}{5.8}\)
Lời giải:
\(B=\frac{5}{5.8.11}+\frac{5}{8.11.14}+...+\frac{5}{302.205.308}\)
\(\Rightarrow \frac{6}{5}B=\frac{6}{5.8.11}+\frac{6}{8.11.14}+...+\frac{6}{302.305.308}\)
\(=\frac{11-5}{5.8.11}+\frac{14-8}{8.11.14}+...+\frac{308-302}{302.305.308}\)
\(=\frac{1}{5.8}-\frac{1}{8.11}+\frac{1}{8.11}-\frac{1}{11.14}+...+\frac{1}{302.305}-\frac{1}{305.308}\)
\(=\frac{1}{5.8}-\frac{1}{305.308}< \frac{1}{5.8}\)
\(\Rightarrow B< \frac{1}{40}.\frac{5}{6}\Leftrightarrow B< \frac{1}{48}\)
C = \(\frac{5}{4}+\frac{5}{4^2}+\frac{5}{4^3}+...+\frac{5}{4^{99}}\)
= \(5\left(\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{99}}\right)\)
Đặt A = \(\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{99}}\)
4A = \(1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{99}}\)
4A - A = \(\left(1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{99}}\right)-\left(\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{99}}\right)\)
3A = \(1-\frac{1}{4^{99}}< 1\)
=> A < \(\frac{1}{3}\) (1)
Thay (1) vào C ta được:
\(C< 5\cdot\frac{1}{3}=\frac{5}{3}\)(đpcm)
Ta có:\(\frac{5}{4}\)< \(\frac{5}{3}\)Mà C = \(\frac{5}{4}+\frac{5}{4^2}+...+\frac{5}{4^{99}}\)<\(\frac{5}{4}\)
\(\Rightarrow\)C < \(\frac{5}{3}\)