K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
25 tháng 9 2018

Lời giải:

Đặt \((\sqrt{x}, \sqrt{y}, \sqrt{z})=(a,b,c)\Rightarrow abc=1\)

Bài toán trở thành chứng minh:

\(\frac{1}{(ab+a+1)^2}+\frac{1}{(bc+b+1)^2}+\frac{1}{(ca+c+1)^2}\geq \frac{1}{3}\)

------------

Áp dụng 1 kết quả quen thuộc của BĐT AM-GM: \(x^2+y^2+z^2\geq \frac{(x+y+z)^2}{3}\) ta có:

\(\frac{1}{(ab+a+1)^2}+\frac{1}{(bc+b+1)^2}+\frac{1}{(ca+c+1)^2}\geq \frac{1}{3}\left(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\right)^2\)

Mà:

\(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}=\frac{c}{abc+ac+c}+\frac{ac}{bc.ac+b.ac+ac}+\frac{1}{ac+c+1}\)

\(=\frac{c}{1+ac+c}+\frac{ac}{c+1+ac}+\frac{1}{ac+c+1}=\frac{ac+c+1}{ac+c+1}=1\) (thay $abc=1$)

Do đó:

\(\frac{1}{(ab+a+1)^2}+\frac{1}{(bc+b+1)^2}+\frac{1}{(ca+c+1)^2}\geq \frac{1}{3}.1^2=\frac{1}{3}\) (đpcm)

Dâu bằng xảy ra khi $a=b=c=1$ hay $x=y=z=1$