K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2021

`sqrta+sqrtb+sqrtc=2`

`<=>(sqrta+sqrtb+sqrtc)^2=4`

`<=>a+b+c+2sqrt{ab}+2sqrt{bc}+2sqrt{ca}=4`

`<=>2sqrt{ab}+2sqrt{bc}+2sqrt{ca}=4-(a+b+c)=4-2-2`

`<=>sqrt{ab}+sqrt{bc}+sqrt{ca}=1`

`=>a+1=a+sqrt{ab}+sqrt{bc}+sqrt{ca}=sqrta(sqrta+sqrtb)+sqrtc(sqrta+sqrtb)=(sqrta+sqrtb)(sqrta+sqrtc)`

Tương tự:`b+1=(sqrtb+sqrta)(sqrtb+sqrtc)`

`c+1=(sqrtc+sqrta)(sqrtc+sqrtb)`

`=>VT=sqrta/((sqrta+sqrtb)(sqrta+sqrtc))+sqrtb/((sqrtb+sqrta)(sqrtb+sqrtc))+sqrtc/((sqrtc+sqrta)(sqrtc+sqrtb))`

`=>VT=(sqrta(sqrtb+sqrtc)+sqrtb(sqrtc+sqrta)+sqrtc(sqrta+sqrtb))/((sqrta+sqrtb)(sqrtb+sqrtc)(sqrtc+sqrta))`

`=(sqrt{ab}+sqrt{ac}+sqrt{bc}+sqrt{ab}+sqrt{ac}+sqrt{bc})/((sqrta+sqrtb)(sqrtb+sqrtc)(sqrtc+sqrta))`

`=(2(sqrt{ab}+sqrt{bc}+sqrt{ca}))/((sqrta+sqrtb)(sqrtb+sqrtc)(sqrtc+sqrta))`

`=2/((sqrta+sqrtb)(sqrtb+sqrtc)(sqrtc+sqrta))`

`=2/\sqrt{[(sqrta+sqrtb)(sqrtb+sqrtc)(sqrtc+sqrta)]^2}`

`=2/\sqrt{(sqrta+sqrtb)(sqrta+sqrtc)(sqrtb+sqrta)(sqrtb+sqrtc)(sqrtc+sqrta)(sqrtc+sqrtb)}`

`=2/\sqrt{(1+a)(1+b)(1+c)}=>đpcm`

26 tháng 8 2021

a ơi giả thiết là a+b+c=\(\sqrt{a}+\sqrt{b}+\sqrt{c}\)=2 nhé a