K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 1 2019

Ta có:

\(\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\ge0\)

\(\Rightarrow2\left(a^2+b^2+c^2\right)-2\left(ab+ac+bc\right)\ge0\)

\(\Rightarrow ab+ac+bc\le\dfrac{2.3}{2}=3\) (1)

Lại có: \(a^2+1+b^2+1+c^2+1\ge2a+2b+2c\)

\(\Rightarrow a+b+c\le\dfrac{a^2+b^2+c^2+3}{2}=3\) (2)

Cộng vế với vế của (1) và (2) ta được:

\(a+b+c+ab+ac+bc\le6\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c=1\)

\(\Rightarrow A=\dfrac{1^{30}+1^4+1^{1975}}{1^{30}+1^4+1^{2017}}=\dfrac{3}{3}=1\)

23 tháng 6 2017

Ta có:

\(\left(a-b\right)^2\ge0\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow a^2+b^2\ge2ab\)

Thiết lập 2 BĐT tương tự ta có:

\(b^2+c^2\ge2bc;c^2+a^2\ge2ca\)

\(\left(a-1\right)^2\ge0\Leftrightarrow a^2-2a+1\Leftrightarrow a^2+1\ge2a\)

Và tương tự \(b^2+1\ge2b;c^2+1\ge2c\)

Cộng theo vế các BĐT trên ta có:

\(2ab+2bc+2ca+2a+2b+2c\le3a^2+3b^2+3c^2+3\)

\(\Leftrightarrow2\left(ab+bc+ca+a+b+c\right)\le3\left(a^2+b^2+c^2+1\right)\)

\(\Leftrightarrow2\left(ab+bc+ca+a+b+c\right)\le12\)

\(\Leftrightarrow ab+bc+ca+a+b+c\le6\)

Đẳng thức xảy ra khi \(a=b=c=1\)

Khi đó \(A=\dfrac{a^{30}+b^4+c^{1975}}{a^{30}+b^4+c^{2014}}=\dfrac{1+1+1}{1+1+1}=1\)

31 tháng 12 2020

Ta có bất đẳng thức: \(ab+bc+ca\le a^2+b^2+c^2;\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\).

Đẳng thức xảy ra khi và chỉ khi a = b = c.

Kết hợp với \(a^2+b^2+c^2=3\) ta có \(a+b+c+ab+bc+ca\le6\).

Mặt khác theo bài ra ta có đẳng thức xảy ra, do đó ta phải có: \(\left\{{}\begin{matrix}a=b=c\\a^2+b^2+c^2=3\\a+b+c\ge0\end{matrix}\right.\Leftrightarrow a=b=c=1\).

Thay vào A ta tính được \(A=1\).

NV
3 tháng 3 2021

\(N=\dfrac{\left(ab\right)^3+\left(bc\right)^3+\left(ca\right)^3}{\left(ab\right)\left(bc\right)\left(ca\right)}\)

Đặt \(\left(ab;bc;ca\right)=\left(x;y;z\right)\Rightarrow x+y+z=0\Rightarrow N=\dfrac{x^3+y^3+z^3}{xyz}\)

\(N=\dfrac{x^3+y^3+z^3-3xyz+3xyz}{xyz}=\dfrac{\dfrac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]+3xyz}{xyz}=\dfrac{3xyz}{xyz}=3\)

 

8 tháng 1 2021

Hi vọng là tìm GTLN:

Không mất tính tổng quát, giả sử b, c cùng phía với 1 \(\Rightarrow\left(b-1\right)\left(c-1\right)\ge0\Leftrightarrow bc\ge b+c-1\).

Áp dụng bất đẳng thức AM - GM ta có: 

\(4=a^2+b^2+c^2+abc\ge a^2+2bc+abc\Leftrightarrow2bc+abc\le4-a^2\Leftrightarrow bc\left(a+2\right)\le\left(2-a\right)\left(a+2\right)\Leftrightarrow bc+a\le2\)

\(\Rightarrow a+b+c\le3\).

Áp dụng bất đẳng thức Schwarz ta có:

\(P\le\dfrac{ab}{9}\left(\dfrac{1}{a}+\dfrac{2}{b}\right)+\dfrac{bc}{9}\left(\dfrac{1}{b}+\dfrac{2}{c}\right)+\dfrac{ca}{9}\left(\dfrac{1}{c}+\dfrac{2}{a}\right)=\dfrac{1}{9}.3\left(a+b+c\right)=\dfrac{1}{3}\left(a+b+c\right)\le1\).

Đẳng thức xảy ra khi a = b = c = 1.

8 tháng 1 2021

đề là tìm GTNN ạ, dù gì cũng cảm ơn bạn nha <3