K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2017

- Mức lương bình quân của các cán bộ và nhân viên công ty là số trung bình của bảng lương:

Giải bài 5 trang 130 SGK Đại Số 10 | Giải toán lớp 10

Ý nghĩa: Số trung vị phân chia dãy số liệu sắp thứ tự thành hai phần bằng nhau.

26 tháng 4 2017

- Mức lương bình quân của các cán bộ và nhân viên công ty là số trung bình của bảng lương:

Giải bài 5 trang 130 SGK Đại Số 10 | Giải toán lớp 10

Ý nghĩa: Số trung vị phân chia dãy số liệu sắp thứ tự thành hai phần bằng nhau.

17 tháng 9 2019

- Mức lương bình quân của các cán bộ và nhân viên công ty là số trung bình của bảng lương:

- Số trung bình:

Giải bài 5 trang 130 SGK Đại Số 10 | Giải toán lớp 10

Sắp xếp các số liệu theo dãy tăng dần:

20060; 20110; 20350; 20350; 20910; 20960; 21130; 21360; 21410; 21410; 76000; 125000.

Số trung vị: Me = (20960 + 21130)/2 = 21045.

Ý nghĩa: Số trung vị đại diện cho mức lương trung bình của nhân viên (vì trong trường hợp này chênh lệch giữa các số liệu quá lớn nên không thể lấy mức lương bình quân làm giá trị đại diện).

21 tháng 6 2019

Bảng số liệu có 7 giá trị, sắp các giá trị theo thứ tự không giảm ta có:

650, 670, 690, 720, 840, 2500, 3000.

Vì số phần tử = 7 là số lẻ nên số trung vị là Me = 720 (số chính giữa của dãy).

Ý nghĩa:

Giải bài tập Toán lớp 10

Số trung bình này chênh lệch quá lớn so với các số liệu nên không đại diện được cho các số liệu.

Trong trường hợp này, số trung vị nên được chọn làm giá trị đại diện cho mức lương.

2 tháng 4 2017

Bảng số liệu có 7 giá trị, sắp các giá trị theo thứ tự không giảm ta có:

650, 670, 690, 720, 840, 2500, 3000.

Vì số phần tử = 7 là số lẻ nên số trung vị là Me = 720 (số chính giữa của dãy).

Ý nghĩa: vì số trung bình cộng = 1295,71 cao hơn Me rất nhiều nên trong bài toán này thì sử dụng Me đại diện cho mức lương là hợp lý hơn.

19 tháng 12 2017

• Ta có:

- Số trung bình cộng x = 55,82 trường là không có nghĩa.

- Trong các số liệu thống kê đã cho có sự chênh lệch quá lớn (điều này chứng tỏ các số liệu thống kê đã cho là không cùng loại)

Chỉ cần một trong hai điều kể trên là đủ để suy ra rằng: Không chọn được số trung bình cộng làm đại diện cho các số liệu thống kê.

• Dễ thấy: Bảng số liệu thống kê đã cho không có mốt.

• Trong trường hợp đã cho, ta chọn số trung vị M e  = 40 (trường) để làm đại diện cho các số liệu thống kê đã cho (về quy mô và độ lớn).

Đáp án: B

3 tháng 2 2019

Số trung bình  x = 6,6 triệu đồng. Số trung vị M e  triệu đồng. Mốt M 0 = 6 triệu đồng.

17 tháng 5 2017

a) Số trung bình \(\overline{x}=6,6\) triệu đồng. Số trung vị \(M_e=6\) triệu đồng. Mốt \(M_0=6\) triệu đồng

b) Trong các số liệu thống kê đã cho có sự chênh lệch nhau quá lớn, nên ta không chọn số trung bình cộng mà chọn số trung vị \(M_e=6\) triệu đồng, làm đại diện cho mức thu nhập trong năm 2000 của mỗi gia đình trong 31 gia đình được khảo sát.

25 tháng 12 2017

x ≈   32   n g ư ờ i ,   s 2 ≈   219 , 5 ;   s   ≈   15   n g ư ờ i

20 tháng 5 2018

Bảng phân bố tần số

    Thời gian hoàn thành một sản phẩm ở một nhóm công nhân

Thời gian (phút) 42 44 45 48 50 54 cộng
Tần số 4 5 20 10 8 3 50

    Bảng phân bố tần suất

    Thời gian hoàn thành một sản phẩm ở một nhóm công nhân

Thời gian (phút) 42 44 45 48 20 54 Cộng
Tần suất (%) 8 10 40 20 16 6 100%

 

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) Nhà máy A:

+) Số trung bình: \(\overline x  = \frac{{4 + 5 + 5 + 47 + 5 + 6 + 4 + 4}}{8} = 10\)

+) Mốt: \({M_o} = 4,{M_o} = 5\)

+) Tứ phân vị: \({Q_1},{Q_2},{Q_3}\)

Sắp xếp mẫu số liệu theo thứ tự không giảm: 4; 4; 4; 5; 5; 5; 6; 47.

\({Q_2} = {M_e} = 5\)

\({Q_1}\) là trung vị của nửa số liệu: 4; 4; 4; 5. Do đó \({Q_1} = 4\)

\({Q_3}\) là trung vị của nửa số liệu: 5; 5; 6; 47. Do đó \({Q_3} = 5,5\)

+) Phương sai \({S^2} = \frac{1}{8}\left( {{4^2} + {5^2} + ... + {4^2}} \right) - {10^2} = 196\) => Độ lệch chuẩn \(S = \sqrt {{S^2}}  = 14\)

Nhà máy B:

+) Số trung bình: \(\overline x  = \frac{{2 + 9 + 9 + 8 + 10 + 9 + 9 + 11 + 9}}{9} = 8,4\)

+) Mốt: \({M_o} = 9\)

+) Tứ phân vị: \({Q_1},{Q_2},{Q_3}\)

Sắp xếp mẫu số liệu theo thứ tự không giảm: 2; 8; 9; 9; 9; 9; 9; 10; 11

\({Q_2} = {M_e} = 9\)

\({Q_1}\) là trung vị của nửa số liệu: 2; 8; 9; 9. Do đó \({Q_1} = 8,5\)

\({Q_3}\) là trung vị của nửa số liệu: 9; 9; 10; 11. Do đó \({Q_3} = 9,5\)

+) Phương sai \({S^2} = \frac{1}{9}\left( {{2^2} + {9^2} + ... + {9^2}} \right) - 8,{4^2} = 6,55\) => Độ lệch chuẩn \(S = \sqrt {{S^2}}  = 2,56\)

b)

Nhà máy A có: \({\Delta _Q} = 1,5\)

Vậy giá trị ngoại lệ \(x > 5,5 + 1,5.1,5 = 7,75\) hoặc \(x < 4 - 1,5.1,5 = 1,75\) là 47.

Nhà máy B có: \({\Delta _Q} = 1\)

Vậy giá trị ngoại lệ \(x > 9,5 + 1,5.1 = 11\) hoặc \(x < 8,5 - 1,5.1 = 7\) là 2.

Ta so sánh trung vị: \(9 > 5\), do dó công nhân nhà máy B có mức lương cao hơn.

Chú ý

Ta không so sánh số trung bình vì có giá trị 47 quá lớn so với các giá trị còn lại.