Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*) \(MinA\) :
Ta thấy: a,b,c đều là các số thực không âm.
Do đó : \(A\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=0,c=1\) và các hoán vị.
\(*)MaxA\) :
Giả sử \(a\ge b\ge c\) \(\Rightarrow3a\ge a+b+c=1\)
\(\Rightarrow1-3a\le0\)
Ta có : \(A=a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)\)
\(=a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)+3abc-3abc\)
\(=\left(a+b+c\right)\left(ab+bc+ca\right)-3abc\)
\(=ab+bc+ca-3abc\)
\(=a\left(b+c\right)+bc\left(1-3a\right)\) \(\le\frac{\left(a+b+c\right)^2}{4}+0\) ( do \(1-3a\le0\) ) \(=\frac{1}{4}\)
hay \(A\le\frac{1}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=\frac{1}{2},c=0\) và các hoán vị.
\(\)
\(\dfrac{1}{\left(1+\sqrt{ab}\sqrt{\dfrac{a}{b}}\right)^2}+\dfrac{1}{\left(1+\sqrt{ab}\sqrt{\dfrac{b}{a}}\right)^2}\ge\dfrac{1}{\left(1+ab\right)\left(1+\dfrac{a}{b}\right)}+\dfrac{1}{\left(1+ab\right)\left(1+\dfrac{b}{a}\right)}=\dfrac{1}{1+ab}\)
Tương tự: \(\dfrac{1}{\left(1+c\right)^2}+\dfrac{1}{\left(1+d\right)^2}\ge\dfrac{1}{1+cd}\)
\(\Rightarrow B\ge\dfrac{1}{1+ab}+\dfrac{1}{1+cd}=\dfrac{1}{1+ab}+\dfrac{1}{1+\dfrac{1}{ab}}=\dfrac{1}{1+ab}+\dfrac{ab}{1+ab}=1\)
\(B_{min}=1\) khi \(a=b=c=d=1\)
Áp dụng BĐT phụ ta có:
\(B\ge\dfrac{1}{1+ab}+\dfrac{1}{1+cd}=\dfrac{ab+cd+2}{1+ab+cd+abcd}=1\)
Vậy GTNN của B bằng 1 <=> a=b=c=d=1
1/\(=4a^2+4b^2+c^2+8ab-4bc-4ca+4b^2+4c^2+a^2+8bc-4ca-4ab+4a^2+4c^2+b^2+8ca-4bc-4ab=\)
\(=9a^2+9b^2+9c^2=9\left(a^2+b^2+c^2\right)\)
2/
Ta có
\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge0\)
\(\Leftrightarrow a^2+b^2+c^2\ge-2\left(ab+bc+ca\right)=2\)
\(\Rightarrow P=9\left(a^2+b^2+c^2\right)\ge18\)
\(\Rightarrow P_{min}=18\)
Bạn có ghi sai đề không vậy? Mình nghĩ đẳng thức cuối nó là \(z=\left(a-b+c\right)^2+8ca\).
Khi đó theo nguyên lí Dirichlet, trong 3 số \(a,b,c\) sẽ tồn tại 2 số nằm cùng phía so với 0 (cùng lớn hơn 0 hoặc cùng bé hơn 0). Giả sử 2 số này là \(a,b\). Khi đó hiển nhiên \(ab>0\) (do a, b cùng dấu), từ đó suy ra \(x=\left(a-b+c\right)^2+8ab>0\) , đpcm.
Ta có: \(A=\dfrac{a^2}{\left(a-b\right)\left(a-c\right)}-\dfrac{b^2}{\left(b-a\right)\left(c-b\right)}-\dfrac{c^2}{\left(c-a\right)\left(b-c\right)}\)
\(=\dfrac{a^2\left(b-c\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}-\dfrac{b^2\left(a-c\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}+\dfrac{c^2\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(=\dfrac{a^2b-a^2c-ab^2+b^2c+ac^2-bc^2}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(=\dfrac{ab\left(a-b\right)-c\left(a^2-b^2\right)+c^2\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(=\dfrac{\left(a-b\right)\left(ab+c^2\right)-c\left(a-b\right)\left(a+b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(=\dfrac{\left(a-b\right)\left(ab+c^2-c\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(=\dfrac{c^2+ab-c}{\left(a-c\right)\left(b-c\right)}\)