Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/Trong các mệnh đề sau, mệnh đề nào sai?
A. Tất cả các số tự nhiên đều không âm.
B. Nếu tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường thì tứ giác là hình bình hành. (sai)
C. Nếu tứ giác là hình chữ nhật thì tứ giác có hai đường chéo bằng nhau.
D. Nếu tứ giác là hình thoi thì tứ giác có hai đường chéo vuông góc với nhau.
câu 2 không biết làm
Mệnh đề | Mệnh đề đảo | Phát biểu bằng khái niệm “ điều kiện đủ” | Phát biểu bằng khái niệm “điều kiện cần” |
Nếu a và b cùng chia hết cho c thì a + b chia hết cho c. | Nếu a + b chia hết cho c thì cả a và b đều chia hết cho c. | a và b chia hết cho c là điều kiện đủ để a + b chia hết cho c. | a + b chia hết cho c là điều kiện cần để a và b chia hết cho c. |
Các số nguyên có tận cùng bằng 0 đều chia hết cho 5. | Các số nguyên chia hết cho 5 thì có tận cùng bằng 0. | Một số nguyên tận cùng bằng 0 là điều kiện đủ để số đó chia hết cho 5. | Các số nguyên chia hết cho 5 là điều kiện cần để số đó có tận cùng bằng 0. |
Tam giác cân có hai đường trung tuyến bằng nhau | Tam giác có hai đường trung tuyến bằng nhau là tam giác cân. | Tam giác cân là điều kiện đủ để tam giác đó có hai đường trung tuyến bằng nhau. | "Hai trung tuyến của một tam giác bằng nhau là điều kiện cần để tam giác đó cân. |
Hai tam giác bằng nhau có diện tích bằng nhau | Hai tam giác có diện tích bằng nhau là hai tam giác bằng nhau. | Hai tam giác bằng nhau là điều kiện đủ để hai tam giác đó có diện tích bằng nhau. | Hai tam giác có diện tích bằng nhau là điều kiện cần để hai tam giác đó bằng nhau. |
Đáp án: A
b, c, e là mệnh đề, mệnh đề b, e là mệnh đề đúng.
Mệnh đề c sai vì π là số nhỏ hơn 4.
a, d là câu hỏi chưa biết tính đúng sai nên không là mệnh đề.
Đáp án D
Ta có các mệnh đề đảo:
(1) “Nếu 3 là số hữu tỉ thì 3 là số vô tỉ”.
Vì hai mệnh đề “3 là số hữu tỉ” và “ 3 là số vô tỉ” đều đúng nên mệnh đề đảo của (1) đúng.
(2) “Nếu tứ giác là hình hình hành thì nó là hình thang có hai cạnh bên bằng nhau”.
Rõ ràng nếu tứ giác là hình hành thì nó chắc chắn có hai cạnh bên bằng nhau nên mệnh đề đảo của (2) đúng.
(3) “Nếu tứ giác là hình thoi thì nó là hình bình hành có hai cạnh bên bằng nhau”, mệnh đề này đúng.
(4) “Nếu 1>2 thì 3>4”.
Vì hai mệnh đề 1>2 và 3>4 đều sai nên mệnh đề đảo của (4) đúng.
P: “tam giác ABC vuông tại A”
Q: “tam giác ABC có \(A{B^2} + A{C^2} = B{C^2}\)”
+) Mệnh đề \(Q \Rightarrow P\) là “Nếu tam giác ABC có \(A{B^2} + A{C^2} = B{C^2}\)thì tam giác ABC vuông tại A”
+) Từ định lí Pytago, ta có:
Tam giác ABC vuông tại A thì \(A{B^2} + A{C^2} = B{C^2}\)
Và: Tam giác ABC có \(A{B^2} + A{C^2} = B{C^2}\) thì vuông tại A.
Do vậy, hai mệnh đề “\(P \Rightarrow Q\)” và “\(Q \Rightarrow P\)” đều đúng.
a) Nếu ABC là một tam giác cân thì ABC là tam giác đều
Đây là mệnh đề sai
b) Nếu ABC là một tam giác cân và có một góc bằng 60o thì ABC là một tam giác đều
Đây là mệnh đề đúng
a)
+) Mệnh đề R: “Nếu ABC là tam giác đều thì nó có hai góc bằng \({60^o}\)” có dạng \(P \Rightarrow Q\), với
P: “ABC là tam giác đều” và Q: “Tam giác ABC có hai góc bằng \({60^o}\)”
Ta thấy khi P đúng thì Q cũng đúng. Do đó \(P \Rightarrow Q\) đúng hay R đúng.
+) Mệnh đề T: “Nếu \(a = 2\) thì \({a^2} - 4 = 0\)” có dạng \(P \Rightarrow Q\), với:
P: “\(a = 2\)” và Q: “\({a^2} - 4 = 0\)”.
Ta thấy khi P đúng thì Q cũng đúng. Do đó \(P \Rightarrow Q\) đúng hay T đúng.
b) Mệnh đề \(Q \Rightarrow P\) của hai mệnh đề trên là:
“Nếu ABC có hai góc bằng \({60^o}\) thì nó là tam giác đều”, đúng.
“Nếu \({a^2} - 4 = 0\) thì \(a = 2\)” sai (vì thiếu nghiệm \(a = - 2\)).
a) \(\overline A \): “\(\frac{5}{{1,2}}\) không là một phân số”.
Đúng vì \(\frac{5}{{1,2}}\) không là phân số (do 1,2 không là số nguyên)
b) \(\overline B \): “Phương trình \({x^2} + 3x + 2 = 0\) vô nghiệm”.
Sai vì phương trình \({x^2} + 3x + 2 = 0\) có hai nghiệm là \(x = - 1\) và \(x = - 2\).
c) \(\overline C \): “\({2^2} + {2^3} \ne {2^{2 + 3}}\)”.
Đúng vì \({2^2} + {2^3} = 12 \ne 32 = {2^{2 + 3}}\).
d) \(\overline D \): “Số 2 025 không chia hết cho 15”.
Sai vì 2025 = 15. 135, chia hết cho 15.
Đáp án D