Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta xét từng câu:
(I) Hải Phòng có phải là một thành phố trực thuộc Trung ương không?
Đây là câu hỏi, không phải mệnh đề.
(II) Hai vectơ có độ dài bằng nhau thì bằng nhau.
Đây có là mệnh đề.Mệnh đề này sai.
Hai vecto được gọi là bằng nhau nếu chúng có cùng hướng và độ dài bằng nhau.
(III) Một tháng có tối đa 5 ngày chủ nhật.
Đây có là mệnh đề và là 1 mệnh đề đúng.
(IV) 2019 là một số nguyên tố.
Đây có là mệnh đề.
Ta có : 2019= 3. 673 nên 2019 là hợp số. Mệnh đề này sai.
(V) Đồ thị của hàm số y = a x 2 ( a ≠ 0 ) là một đường parabol.
Đây là mệnh đề đúng.
(VI) Phương trình bậc hai a x 2 + b x + c = 0 ( a ≠ 0 ) có nhiều nhất là 2 nghiệm.
Đây là mệnh đề đúng.
Như vậy có tất cả 5 mệnh đề và 3 mệnh đề đúng.
Đáp án B
+) Mệnh đề phủ định của mệnh đề A là \(\overline A \): “Đồ thị hàm số y = x không là một đường thẳng”
Mệnh đề \(\overline A \) sai vì đồ thị hàm số y = x là một đường thẳng.
+) Mệnh đề phủ định của mệnh đề B là \(\overline B \): “Đồ thị hàm số \(y = {x^2}\) đi qua điểm A (3; 9)”
Mệnh đề \(\overline B \) đúng vì \(9 = {3^2}\) nên A (3;9) thuộc đồ thị hàm số \(y = {x^2}\).
a) \(\overline A \): “\(\frac{5}{{1,2}}\) không là một phân số”.
Đúng vì \(\frac{5}{{1,2}}\) không là phân số (do 1,2 không là số nguyên)
b) \(\overline B \): “Phương trình \({x^2} + 3x + 2 = 0\) vô nghiệm”.
Sai vì phương trình \({x^2} + 3x + 2 = 0\) có hai nghiệm là \(x = - 1\) và \(x = - 2\).
c) \(\overline C \): “\({2^2} + {2^3} \ne {2^{2 + 3}}\)”.
Đúng vì \({2^2} + {2^3} = 12 \ne 32 = {2^{2 + 3}}\).
d) \(\overline D \): “Số 2 025 không chia hết cho 15”.
Sai vì 2025 = 15. 135, chia hết cho 15.
1/Trong các mệnh đề sau, mệnh đề nào sai?
A. Tất cả các số tự nhiên đều không âm.
B. Nếu tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường thì tứ giác là hình bình hành. (sai)
C. Nếu tứ giác là hình chữ nhật thì tứ giác có hai đường chéo bằng nhau.
D. Nếu tứ giác là hình thoi thì tứ giác có hai đường chéo vuông góc với nhau.
câu 2 không biết làm
Mệnh đề | Mệnh đề đảo | Phát biểu bằng khái niệm “ điều kiện đủ” | Phát biểu bằng khái niệm “điều kiện cần” |
Nếu a và b cùng chia hết cho c thì a + b chia hết cho c. | Nếu a + b chia hết cho c thì cả a và b đều chia hết cho c. | a và b chia hết cho c là điều kiện đủ để a + b chia hết cho c. | a + b chia hết cho c là điều kiện cần để a và b chia hết cho c. |
Các số nguyên có tận cùng bằng 0 đều chia hết cho 5. | Các số nguyên chia hết cho 5 thì có tận cùng bằng 0. | Một số nguyên tận cùng bằng 0 là điều kiện đủ để số đó chia hết cho 5. | Các số nguyên chia hết cho 5 là điều kiện cần để số đó có tận cùng bằng 0. |
Tam giác cân có hai đường trung tuyến bằng nhau | Tam giác có hai đường trung tuyến bằng nhau là tam giác cân. | Tam giác cân là điều kiện đủ để tam giác đó có hai đường trung tuyến bằng nhau. | "Hai trung tuyến của một tam giác bằng nhau là điều kiện cần để tam giác đó cân. |
Hai tam giác bằng nhau có diện tích bằng nhau | Hai tam giác có diện tích bằng nhau là hai tam giác bằng nhau. | Hai tam giác bằng nhau là điều kiện đủ để hai tam giác đó có diện tích bằng nhau. | Hai tam giác có diện tích bằng nhau là điều kiện cần để hai tam giác đó bằng nhau. |
Đáp án D
Ta có các mệnh đề đảo:
(1) “Nếu 3 là số hữu tỉ thì 3 là số vô tỉ”.
Vì hai mệnh đề “3 là số hữu tỉ” và “ 3 là số vô tỉ” đều đúng nên mệnh đề đảo của (1) đúng.
(2) “Nếu tứ giác là hình hình hành thì nó là hình thang có hai cạnh bên bằng nhau”.
Rõ ràng nếu tứ giác là hình hành thì nó chắc chắn có hai cạnh bên bằng nhau nên mệnh đề đảo của (2) đúng.
(3) “Nếu tứ giác là hình thoi thì nó là hình bình hành có hai cạnh bên bằng nhau”, mệnh đề này đúng.
(4) “Nếu 1>2 thì 3>4”.
Vì hai mệnh đề 1>2 và 3>4 đều sai nên mệnh đề đảo của (4) đúng.
Đáp án: A
b, c, e là mệnh đề, mệnh đề b, e là mệnh đề đúng.
Mệnh đề c sai vì π là số nhỏ hơn 4.
a, d là câu hỏi chưa biết tính đúng sai nên không là mệnh đề.