Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C + A = B ⟹ C = B – A
C = (x2 + y – x2y2 – 1) – (x2 – 2y + xy + 1)
C = x2 + y – x2y2 – 1 – x2 + 2y – xy – 1
C = (x2– x2) + (y + 2y) – x2y2 – xy + ( - 1 – 1)
C = 0 + 3y – x2y2 – xy – 2
C = 3y – x2y2 – xy – 2
Ta có : A = x2 – 2y + xy + 1; B = x2 + y – x2y2 – 1
C = A + B = (x2 – 2y + xy + 1) + (x2 + y – x2y2 – 1)
C = x2 – 2y + xy + 1 + x2 + y – x2y2 – 1
C = (x2+ x2) + (– 2y + y) + xy – x2y2 + (1 – 1)
C = 2x2 – y + xy – x2y2 + 0
C = 2x2 – y + xy – x2y2
2,
M + N = 3xyz - 3x2 + 5xy - 1 + 5x2 + xyz - 5xy + 3 - y
= -3x2 + 5x2 + 3xyz + xyz + 5xy - 5xy - y - 1 + 3
= 2x2 + 4xyz - y +2.
M - N = (3xyz - 3x2 + 5xy - 1) - (5x2 + xyz - 5xy + 3 - y)
= 3xyz - 3x2 + 5xy - 1 - 5x2 - xyz + 5xy - 3 + y
= -3x2 - 5x2 + 3xyz - xyz + 5xy + 5xy + y - 1 - 3
= -8x2 + 2xyz + 10xy + y - 4.
N - M = (5x2 + xyz - 5xy + 3 - y) - (3xyz - 3x2 + 5xy - 1)
= 5x2 + xyz - 5xy + 3 - y - 3xyz + 3x2 - 5xy + 1
= 5x2 + 3x2 + xyz - 3xyz - 5xy - 5xy - y + 3 + 1
= 8x2 - 2xyz - 10xy - y + 4.
3,
a) P + (x2 – 2y2) = x2 – y2 + 3y2 – 1
P = (x2 – y2 + 3y2 – 1) - (x2 – 2y2)
P = x2 – y2 + 3y2 – 1 - x2 + 2y2
P = x2 – x2 – y2 + 3y2 + 2y2 – 1
P = 4y2 – 1.
Vậy P = 4y2 – 1.
b) Q – (5x2 – xyz) = xy + 2x2 – 3xyz + 5
Q = (xy + 2x2 – 3xyz + 5) + (5x2 – xyz)
Q = xy + 2x2 – 3xyz + 5 + 5x2 – xyz
Q = 7x2 – 4xyz + xy + 5
Vậy Q = 7x2 – 4xyz + xy + 5.
4,
a, Thu gọn : x2+2xy-3x3+2y3+3x3-y3
= x2+2xy+(-3x3+3x3)+2y3-y3
=x2+2xy+2y3-y3
Thay x=5,y=4 vào đa thức x2+2xy+2y3-y3 Ta có:
52 + 2.5.4 + 43 = 25 + 40 + 64 = 129.
Vậy giá trị của đa thức x2+2xy+2y3-y3 tại x=5,y=4 là 129
b,
Thay x = -1; y = -1 vào biểu thức xy-x2y2+x4y4-x6y6+x8y8 Ta Có
M = (-1)(-1) - (-1)2.(-1)2 + (-1)4. (-1)4-(-1)6.(-1)6 + (-1)8.(-1)8
= 1 -1 + 1 - 1+ 1 = 1.
Vậy giá trị của biểu thức xy-x2y2+x4y4-x6y6+x8y8 tại x=-1, y=-1 là 1
5,
a, C=A+B
C = x2 – 2y + xy + 1 + x2 + y - x2y2 - 1
C = 2x2 – y + xy - x2y2
b) C + A = B => C = B - A
C = (x2 + y - x2y2 - 1) - (x2 – 2y + xy + 1)
C = x2 + y - x2y2 - 1 - x2 + 2y - xy - 1
C = - x2y2 - xy + 3y - 2.
a) C = A + B
C = x2 – 2y + xy + 1 + x2 + y - x2y2 - 1
C = 2x2 – y + xy - x2y2
b) C + A = B => C = B - A
C = (x2 + y - x2y2 - 1) - (x2 – 2y + xy + 1)
C = x2 + y - x2y2 - 1 - x2 + 2y - xy - 1
C = - x2y2 - xy + 3y - 2.
Chúc bn học tốt nha!!!!!!!!!!
a) Ta có
\(\hept{\begin{cases}A=x^2-2y+xy+1\\B=x^2+y-x^2y^2-1\end{cases}}\)
\(\Rightarrow A+B=x^2-2y+xy+1+x^2+y-x^2y^2-1\)
\(A+B=\left(x^2+x^2\right)-\left(2y-y\right)+\left(1-1\right)+xy-x^2y^2\)
\(A+B=2x^2-y+xy-x^2y^2\)
Vậy đa thức \(C=2x^2-y+xy-x^2y^2\)
b )
\(C+A=B\)
\(\Rightarrow C=B-A\)
\(\Rightarrow C=x^2+y-x^2y^2-1-\left(x^2-2y+xy+1\right)\)
\(\Rightarrow C=x^2+y-x^2y^2-1-x^2+2y-xy-1\)
\(\Rightarrow C=\left(x^2-x^2\right)+\left(y+2y\right)-\left(1+1\right)-x^2y^2-xy\)
\(\Rightarrow C=3y-2-x^2y^2-xy\)
Vậy đa thức \(C=3y-2-x^2y^2-xy\)
\(A=5x^2y-xy^2+4xy+6\) bậc : 3
a)\(B=-5x^2y+xy^2-4xy-6\)
b)\(=>C=-2xy+1-5x^2y+xy^2-4xy-6\)
\(C=-5x^2y+xy^2-6xy-5\)
a: \(C=A+B=x^2-2y+xy+1+x^2+y-x^2y^2-1=2x^2-y+xy-x^2y^2\)
b: C=B-A
\(=x^2+y-x^2y^2-1-x^2+2y-xy-1\)
\(=-x^2y^2-2+3y-xy\)
a) Ta có C = A+B
=> C = ( x2 - 2y + xy +1 ) + ( x2 + y - x2y2 - 1 )
<=> C = x2 - 2y + xy + 1 + x2 + y - x2y2 - 1
<=> C = ( x2 + x2 ) + ( -2y + y ) + xy - x2y2 + ( 1 - 1 )
<=> C = 2x2 + ( -1y ) + xy - x2y2 + 0
<=> C = 2x2 - y + xy - x2y2
b) Ta có : C + A = B
=> C = B - A
<=> C = ( \(x^2+y-x^2y^2-1\)) - ( \(x^2-2y+xy+1\))
C = \(x^2+y-x^2y^2-1\)\(-x^2+2y-xy-1\)
C = (\(x^2-x^2\))+(\(y+2y\))\(-xy-x^2y^2\)
C = 0 + 3y \(-xy-x^2y^2\)
C = 3y\(-xy-x^2y^2\)
=> A+B=C =x2 +x2 -2y + y + xy - x2 y2 +1 -1
= 2x2 - y + xy - x2 y2