Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) Đặt \(A=1\cdot2+2\cdot3+3\cdot4+...+99\cdot100\)
Ta có: \(A=1\cdot2+2\cdot3+3\cdot4+...+99\cdot100\)
\(\Leftrightarrow3A=3\cdot\left(1\cdot2+2\cdot3+3\cdot4+...+99\cdot100\right)\)
\(\Leftrightarrow3A=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+3\cdot4\cdot\left(5-2\right)+...+99\cdot100\cdot\left(101-98\right)\)
\(\Leftrightarrow3\cdot A=1\cdot2\cdot3-1\cdot2\cdot3+2\cdot3\cdot4-2\cdot3\cdot4+...+98\cdot99\cdot100-98\cdot99\cdot100+99\cdot100\cdot101\)
\(\Leftrightarrow3\cdot A=99\cdot100\cdot101\)
\(\Leftrightarrow A=33\cdot100\cdot101=333300\)
b) Ta có: \(1+2-3-4+...+97+98-99-100\)
\(=\left(1+2-3-4\right)+\left(5+6-7-8\right)+...+\left(97+98-99-100\right)\)
\(=\left(-4\right)+\left(-4\right)+...+\left(-4\right)\)
\(=-4\cdot25=-100\)
ta có \(3S=1\cdot2\cdot3+2\cdot3\cdot3+.....+99\cdot100\cdot3\)
\(3S=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)....+99\cdot100\cdot\left(101-98\right)\)
\(3S=1\cdot2\cdot3-1\cdot2\cdot3+2\cdot3\cdot4-......-98\cdot99\cdot100+99\cdot100\cdot101\)
\(3S=99.100.101\)
\(S=\frac{99\cdot100\cdot101}{3}\)
S=...
3S=1.2.3+2.3.3+3.4.3+4.5.3+...+99.100.3
3S=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+4.5.6-3.4.5+...+99.100.101-98.99.100
3S=99.100.101
S=33.100.101
S=333300
Vậy S=333300
Đặt S= 1.2 + 2.3 + 3.4 + ...+ 99.100
3S = 1.2.3+2.3.3+3.4.3+...+98.99.3+99.100.3
3S= 1.2.3+2.3(4-1)+3.4(5-2)+...+98.99(100-97)+99.100(101-98)
3S= 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...-97.98.99+99.100.101-98.99.100
3S = 99.100.101 3S = 3.33.100.101
S=33.100.101= 333300
Đặt
S= 1.2 + 2.3 + 3.4 + ...+ 99.100
3S = 1.2.3+2.3.3+3.4.3+...+98.99.3+99.100.3
3S= 1.2.3+2.3(4-1)+3.4(5-2)+...+98.99(100-97)+99.100(101-98)
3S= 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...-97.98.99+99.100.101-98.99.100
3S = 99.100.101 3S = 3.33.100.101
S=33.100.101= 333300
S = 1.2 + 2.3 + ... + 99.100
4S = 1.2.(3 - 0) + 2.3.(4 - 1) + ... + 99.100.(101 - 98)
4S = 1.2.3 - 0.1.2 + 2.3.4 - 1.2.3 +...+ 99.100.101 - 98.99.100
4S = (1.2.3 + 2.3.4 +...+ 99.100.101) - (0.1.2 + 1.2.3 +...+ 98.99.100)
4S = 99.100.101 - 0.1.2
4S = 99.100.101
S = 99.25.101
S = 249975
\(S=1.2+2.3+3.4+4.5+5.6+...+99.100\)
\(3S=1.2.3+2.3.3+3.4.3+4.5.3+...+99.100.3\)
\(3S=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+4.5.\left(6-3\right)+...+99.100.\left(101-98\right)\)\(1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101+98.99.100\)
\(3S=\left(1.2.3-1.2.3\right)+\left(2.3.4-2.3.4\right)+...+\left(98.99.100-98.99.100\right)+99.100.101\)
\(3S=99.100.101=9999000\)
\(S=9999000:3=3333000\)
\(\Rightarrow S=3333000\)
C=1.2+2.3+...+99.100
3C=1.2.3+2.3.3+...+99.100.3
3C=1.2(3-0)+2.3(4-1)+...+99.100(101-98)
C=99.100.101 phần 3
C=333 300