Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có \(3S=1\cdot2\cdot3+2\cdot3\cdot3+.....+99\cdot100\cdot3\)
\(3S=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)....+99\cdot100\cdot\left(101-98\right)\)
\(3S=1\cdot2\cdot3-1\cdot2\cdot3+2\cdot3\cdot4-......-98\cdot99\cdot100+99\cdot100\cdot101\)
\(3S=99.100.101\)
\(S=\frac{99\cdot100\cdot101}{3}\)
S=...
3S=1.2.3+2.3.3+3.4.3+4.5.3+...+99.100.3
3S=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+4.5.6-3.4.5+...+99.100.101-98.99.100
3S=99.100.101
S=33.100.101
S=333300
Vậy S=333300
Đặt S= 1.2 + 2.3 + 3.4 + ...+ 99.100
3S = 1.2.3+2.3.3+3.4.3+...+98.99.3+99.100.3
3S= 1.2.3+2.3(4-1)+3.4(5-2)+...+98.99(100-97)+99.100(101-98)
3S= 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...-97.98.99+99.100.101-98.99.100
3S = 99.100.101 3S = 3.33.100.101
S=33.100.101= 333300
Đặt
S= 1.2 + 2.3 + 3.4 + ...+ 99.100
3S = 1.2.3+2.3.3+3.4.3+...+98.99.3+99.100.3
3S= 1.2.3+2.3(4-1)+3.4(5-2)+...+98.99(100-97)+99.100(101-98)
3S= 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...-97.98.99+99.100.101-98.99.100
3S = 99.100.101 3S = 3.33.100.101
S=33.100.101= 333300
A = 1.2 + 2.3 + 3.4 + 4.5 + ... + 99.100 + 100.101
3.A = 1.2.3 + 2.3.3 +3.4.3 + ... + 100.101.3
3A= 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 100.101.(102 - 99)
3A = 1.2.3 + 2.3.4 - 1.2.3 + 2.3.4 -3.4.5 + ... +99.100.101 -100.101.102
3A = 99.100.101
A = 99.100.101 : 3
A = 33.100.101
Vậy A = 33. 100 .101 (Tự tính)
A = 1.2 + 2.3 + 3.4 + ....... + 99.100
3A = 1.2.3 + 2.3.3 + 3.4.3 + ....... + 99 . 100 . 3
3A = 1.2.3 + 2.3.(4-1) + 3.4.(5-2) +.... + 99.100.(101-98)
3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ..... + 99 . 100 . 101 - 98 . 99 . 100
3A = (1.2.3 - 1.2.3) + (2.3.4-2.3.4) + ... + (98.99.100 - 98.99.100) + 99 . 100 . 101
3A = 99 . 100 . 101 = 999900
A = 999900 : 3 = 333300
A=1*2+2*3+3*4+...+99*100
A=100*101*102:3
A=343400(công thức)
gọi tổng là S ta có
3S=1.2.3-0.1.2+2.3.4-1.2.3+......+99.100.101-98.99.100
=>3S=98.99.100
=>S=\(\frac{98.99.100}{3}=323400\)
A = 1.2+2.3+3.4+......+99.100
Gấp A lên 3 lần ta có:
A . 3 = 1.2.3 + 2.3.3 + 3.4.3 + … + 99.100.3
A . 3 = 1.2.3 + 2.3.(4 - 1) + 3.4.( 5 - 2) + … + 99.100. (101 - 98)
A . 3 = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + … + 99.100.101 - 98.99.100
A . 3 = 99.100.101
A = 99.100.101 : 3
A = 33.100.101
A = 333 300
A=1.2+2.3+3.4+4.5+5.6+.......+99.100
3A=3(1.2+2.3+3.4+4.5+5.6+..........+99.100)
3A=1.2.3+2.3.3+3.3.4+3.5.6+.......+3.99.100
3A=1.2.3+2.3.(4-1)+3.4.(5-2)+............+99.100.(101-98)
3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+.........+99.100.101-98.99.100
3A=99.100.101
A=33.100.101
A=333300
3S = 1.2.3+2.3.(4-1)+....+99.100.(101-98)
= 1.2.3+2.3.4-1.2.3+....+99.100.101-98.99.100
= 99.100.101
=> S = 99.100.101:4=99.25.101
S = 1.2 + 2.3 + ... + 99.100
4S = 1.2.(3 - 0) + 2.3.(4 - 1) + ... + 99.100.(101 - 98)
4S = 1.2.3 - 0.1.2 + 2.3.4 - 1.2.3 +...+ 99.100.101 - 98.99.100
4S = (1.2.3 + 2.3.4 +...+ 99.100.101) - (0.1.2 + 1.2.3 +...+ 98.99.100)
4S = 99.100.101 - 0.1.2
4S = 99.100.101
S = 99.25.101
S = 249975
\(S=1.2+2.3+3.4+4.5+5.6+...+99.100\)
\(3S=1.2.3+2.3.3+3.4.3+4.5.3+...+99.100.3\)
\(3S=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+4.5.\left(6-3\right)+...+99.100.\left(101-98\right)\)\(1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101+98.99.100\)
\(3S=\left(1.2.3-1.2.3\right)+\left(2.3.4-2.3.4\right)+...+\left(98.99.100-98.99.100\right)+99.100.101\)
\(3S=99.100.101=9999000\)
\(S=9999000:3=3333000\)
\(\Rightarrow S=3333000\)