K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2017

Gọi 4 số lẻ liên tiếp đó là :

\(2n+1;2n+3;2n+5;2n+7\) \(\left(n\in N\right)\)
Ta có:
\(\left(2n+5\right)\left(2n+7\right)-\left(2n+1\right)\left(2n+3\right)\)
\(=4n^2+24n+35-\left(4n^2+8n+3\right)\)
\(=16n+32\)
Do \(16n⋮16\)1 và \(32⋮16\)6
\(\Rightarrow16n+32⋮16\)
\(\Rightarrowđpcm\)

21 tháng 6 2017

Gọi 4 số lẻ liên tiếp lần lượt là \(2n-3;2n-1;2n+1;2n+3\) với \(n\in N\)*

Ta có:

\(\left[\left(2n+1\right).\left(2n+3\right)\right]-\left[\left(2n-3\right)\left(2n-1\right)\right]\)

\(=\left(4n^2+6n+2n+3\right)-\left(4n^2-2n-6n+3\right)\)

\(=4n^2+6n+2n+3-4n^2+2n+6n-3\)

\(=6n+2n+6n+2n=16n\)

Vì 16 chia hết cho 16 nên 16n chia hết cho 16

=> \(\left[\left(2n+1\right).\left(2n+3\right)\right]-\left[\left(2n-3\right)\left(2n-1\right)\right]\) chia hết cho 16

Vậy yêu cầu đề bài đã được chứng minh.

Chúc bạn học tốt!!!

8 tháng 6 2016

Ô tô đi với vận tốc 50km/giờ vì :

         100 : 2 = 50

                   đs : 50

8 tháng 6 2016

Gọi 4 số lẻ đó là a-1;a+1;a+3;a+5

Ta có: \(\left(a+3\right)\left(a+5\right)-\left(a-1\right)\left(a+1\right)\)

\(=a\left(a+5\right)+3\left(a+5\right)-\left(a^2-1^2\right)\)

\(=a^2+8a+15-a^2+1=8a+16=16.\left(\frac{1}{2}a+1\right)\) luôn chia hết cho 16

=>ĐPCM

19 tháng 7 2017

Cho a là 1 số chia hết cho 5

=> 4 số nguyên liên tiếp không chia hết cho 5 là: a+1, a+2, a+3, a+4

Hiệu của tích 2 số cuối với hiệu tích 2 số đầu là: (a+3)(a+4) - (a+1)(a+2) = \(a^2+4a+3a+12-\left(a^2+2a+a+2\right)\)

=\(a^2+4a+3a+12-a^2-2a-a-2\)

=\(4a+10\)

Vì a chia hết cho 5 nên tận cùng của a là 0 hoặc 5

Nếu a tận cùng bằng 0 thì 4a tận cùng bằng 0

Nếu a tận cùng bằng 5 thi 4a tận cùng bằng 4.5 = 20 ( tận cùng cũng bằng 0)

=> 4a tận cùng bằng 0

=> 4a + 10 có tận cùng bằng 0

Vậy hiệu của tích 2 số cuối với tích 2 số đầu có tận cùng bằng 0

Tk mình nha

13 tháng 6 2019

Ta viết dạng tổng quát của 4 số ấy là:

2k; 2k+2; 2k+4 và 2k+6 với k là số tự nhiên

Xét tích của hai số giữa và tích của số đầu và cuối lần lượt là:

(2k+2)(2k+4)=4k2+12k+8

2k(2k+6)=4k2+12k

=> (2k+2)(2k+4)-2k(2k+6)=4k2+12k+8-4k2-12k=8 không đổi

Vậy hiệu của tích 2 số giữa và tích số đầu và cuối trong 4 số tự nhiên chẵn liên tiếp là không đổi

13 tháng 6 2019

Ta viết dạng tổng quát của 4 số ấy là: 2k; 2k+2; 2k+4 và 2k+6 với k là số tự nhiên

Xét tích của hai số giữa và tích của số đầu và cuối lần lượt là: (2k+2)(2k+4)=4k 2+12k+8

2k(2k+6)=4k 2+12k

=> (2k+2)(2k+4)-2k(2k+6)=4k 2+12k+8-4k 2 -12k=8 không đổi

Vậy hiệu của tích 2 số giữa và tích số đầu và cuối trong 4 số tự nhiên chẵn liên tiếp là không đổi

5 tháng 7 2015

mk bít bài này:

a) gọi 3 số chẵn đó là: a, a + 2, a + 4

theo bài ra, ta có:

      (a + 2) (a + 4) - [a . (a + 2)] = 192

=> a2 + 6a + 8 - (a2 + 2a) = 192 

=> a2 + 6a + 8 - a2 - 2a = 192

=> 4a + 8 = 192

=> 4a = 184

=> a = 46

=> a + 2 = 46 + 2 = 48; a + 4 = 46 + 4 = 50

              Vậy 3 số chẵn đó lần lượt là: 46, 48, 50

20 tháng 8 2016

b)gọi 4 số tự nhiên liên tiếp đó là x,x+1,x+2,x+3

  Theo bài ra ta có :x(x+1)+146=(x+2)(x+3)

                        <=>x^2+x+146=x^2+5x+6

                        <=>4x=140

                       <=>x=35

Vậy 4 số tự nhiên đó là 35,36,37,38

2 tháng 8 2023

Gọi 2 số chính phương liên tiếp đó là \(n^2,\left(n+1\right)^2\). Ta có:

\(P=n^2+\left(n+1\right)^2+n^2\left(n+1\right)^2\)

\(=n^2+n^2+2n+1+n^2\left(n^2+2n+1\right)\)

\(=n^4+2n^3+3n^2+2n+1\)

Ta có \(\dfrac{P}{n^2}=n^2+2n+3+\dfrac{2}{n}+\dfrac{1}{n^2}\)

\(=\left(n+\dfrac{1}{n}\right)^2+2\left(n+\dfrac{1}{n}\right)+1\)

\(=\left(n+\dfrac{1}{n}+1\right)^2\)

\(\Rightarrow P=\left[n\left(n+\dfrac{1}{n}+1\right)\right]^2=\left(n^2+n+1\right)^2=\left[n\left(n+1\right)+1\right]^2\)

 Dễ dàng kiểm chứng được \(2|n\left(n+1\right)\), do đó \(n\left(n+1\right)+1\) là số lẻ, suy ra đpcm.

 

 

 

2 tháng 8 2023

Hai số chính phương liên tiếp là \(n^2;\left(n+1\right)^2\)

Theo đề ta có :

\(n^2+\left(n+1\right)^2+n^2\left(n+1\right)^2\)

\(=n^2+n^2+2n+1+n^4+2n^3+n^2\)

\(=\left(n^4+n^3+n^2\right)+\left(n^3+n^2+n\right)+\left(n^2+n+1\right)\)

\(=n^2\left(n^2+n+1\right)+n\left(n^2+n+1\right)+\left(n^2+n+1\right)\)

\(=n^2\left(n^2+n+1\right)+n\left(n^2+n+1\right)+\left(n^2+n+1\right)\)

\(=\left(n^2+n+1\right)^2\)

\(=\left[n\left(n+1\right)+1\right]^2\)

mà \(n\left(n+1\right)⋮2\) (là 2 số tự nhiên liên tiếp)

\(\Rightarrow n\left(n+1\right)+1\) là số lẻ

\(\Rightarrow\left[n\left(n+1\right)+1\right]^2\) là số chính phương lẻ

\(\Rightarrow dpcm\)