K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2018

a) Đk \(x\ne\pm1\), sau khi rút gọn ta được: (bạn tư làm)

   \(P=\frac{x}{x+1}\)

b) Khi \(\left|x-\frac{2}{3}\right|=\frac{1}{3}\) thì hoặc \(x-\frac{2}{3}=\frac{1}{3}\) hoặc \(x-\frac{2}{3}=-\frac{1}{3}\)

Hay là \(x=1\) hoặc \(x=\frac{1}{3}\)

Do để P có nghĩa thì \(x\ne\pm1\) nên \(x=\frac{1}{3}\), khi đó: 

 \(P=\frac{\frac{1}{3}}{\frac{1}{3}+1}=\frac{1}{4}\)

c) P > 1 khi \(\frac{x}{x+1}>1\)

   \(\Leftrightarrow1-\frac{1}{x+1}>1\)

   \(\Leftrightarrow\frac{1}{x+1}< 0\)

   \(\Leftrightarrow x< -1\)

e) Đề không rõ ràng

1 tháng 5 2021

dễ mà ko bt lm à

18 tháng 8 2020

a) ĐKXĐ : \(x\ne0\);\(x\ne2;-2\)

 A=\(\left(\frac{1}{x-2}-\frac{2x}{4-x^2}+\frac{1}{2+x}\right).\left(\frac{2}{x}-1\right)\)

       =\(\left(\frac{1}{x-2}+\frac{2x}{x^2-4}+\frac{1}{x+2}\right).\left(\frac{2}{x}-\frac{x}{x}\right)\)

       =\(\frac{x+2+2x+x-2}{\left(x+2\right)\left(x-2\right)}.\frac{2-x}{x}\)

       =\(\frac{4x}{\left(x+2\right)\left(x-2\right)}.\frac{-\left(x-2\right)}{x}\)

       =  \(\frac{-4}{x+2}\)

b) Ta có : \(2x^2+x=0\)

        \(\Leftrightarrow x\left(2x+1\right)=0\)

        \(\Leftrightarrow\orbr{\begin{cases}x=0\left(ktm\right)\\x=\frac{-1}{2}\end{cases}}\left(tm\right)\)

Để A = -1/2 thì 

\(\Leftrightarrow\frac{-4}{x+2}=\frac{-1}{2}\)

\(\Leftrightarrow-\left(x+2\right)=-8\)

\(\Leftrightarrow x+2=8\)

\(\Leftrightarrow x=6\)

c) Để A =0,5 thì 

\(\frac{-4}{x+2}=0,5\)

\(\Leftrightarrow-8=x+2\)

\(\Leftrightarrow x=-10\)

d) Để A \(\inℤ\)thì

\(-4⋮x+2\)

\(\Leftrightarrow x+2\inƯ\left(-4\right)\)

\(\Leftrightarrow x+2\in\left\{1;2;4;-1;-2;-4\right\}\)

Lập bảng giá trị 

     x+2-11-22-44
              x-3-1-40-62

Mà \(x\ne0\)và \(x\ne2;-2\)

\(\Rightarrow x\in\left\{-1;-3;-4;-6\right\}\)

7 tháng 2 2020

\(ĐKXĐ:x\ne\pm1\)

a) \(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{4x^2}{1-x^2}\right):\frac{2x^2-2}{x^2-2x+1}\)

\(\Leftrightarrow A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}-\frac{4x^2}{x^2-1}\right):\frac{2\left(x^2-1\right)}{\left(x-1\right)^2}\)

\(\Leftrightarrow A=\frac{\left(x+1\right)^2-\left(x-1\right)^2-4x^2}{x^2-1}.\frac{\left(x-1\right)^2}{2\left(x^2-1\right)}\)

\(\Leftrightarrow A=\frac{x^2+2x+1-x^2+2x-1}{x^2-1}.\frac{\left(x-1\right)^2}{2\left(x^2-1\right)}\)

\(\Leftrightarrow A=\frac{4x-4x^2}{x^2-1}.\frac{\left(x-1\right)^2}{2\left(x^2-1\right)}\)

\(\Leftrightarrow A=\frac{-4x\left(x-1\right)^3}{2\left(x-1\right)^2\left(x+1\right)^2}\)

\(\Leftrightarrow A=\frac{-2x\left(x-1\right)}{\left(x+1\right)^2}\)

b) Thay x = -3 vào A, ta được :

\(A=\frac{\left(-2\right)\left(-3\right)\left(-3-1\right)}{\left(-3+1\right)^2}\)

\(\Leftrightarrow A=\frac{6.\left(-4\right)}{2^2}\)

\(\Leftrightarrow A=-6\)

c) Để A > -1

\(\Leftrightarrow-2x\left(x-1\right)>-\left(x+1\right)^2\)

\(\Leftrightarrow2x\left(x-1\right)< \left(x+1\right)^2\)

\(\Leftrightarrow2x^2-2x< x^2+2x+1\)

\(\Leftrightarrow x^2-4x-1< 0\)

\(\Leftrightarrow\left(x-2\right)^2-5< 0\)

\(\Leftrightarrow\left(x-2\right)^2< 5\)

Đoạn này bạn tự tìm giá trị x thỏa mãn là xong (Chú ý ĐKXĐ)

24 tháng 6 2017

a) ĐKXĐ: \(x\ne-2;x\ne2\), rút gọn:

\(A=\left[\frac{3\left(x-2\right)-2x\left(x+2\right)+2\left(2x^2+3\right)}{2\left(x-2\right)\left(x+2\right)}\right]\div\frac{2x-1}{4\left(x-2\right)}\)

\(A=\frac{3x-6-2x^2-4x+4x^2+6}{2\left(x-2\right)\left(x+2\right)}\cdot\frac{4\left(x-2\right)}{2x-1}=\frac{4\left(2x^2-x\right)}{x\left(x+2\right)\left(2x-1\right)}=\frac{4x\left(2x-1\right)}{x\left(x+2\right)\left(2x-1\right)}=\frac{4}{x+2}\)

b) Ta có: \(\left|x-1\right|=3\Leftrightarrow\hept{\begin{cases}x-1=3\\x-1=-3\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\left(n\right)\\x=-2\left(l\right)\end{cases}}}\)

=> Khi \(x=4\)thì \(A=\frac{4}{4+2}=\frac{4}{6}=\frac{2}{3}\)

c) \(A< 2\Leftrightarrow\frac{4}{x+2}< 2\Leftrightarrow4< 2x+4\Leftrightarrow0< 2x\Leftrightarrow x>0\)Vậy \(A< 2,\forall x>0\)

d) \(\left|A\right|=1\Leftrightarrow\left|\frac{4}{x+2}\right|=1\Leftrightarrow\hept{\begin{cases}\frac{4}{x+2}=1\\\frac{4}{x+2}=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\left(l\right)\\x=-6\left(n\right)\end{cases}}}\)Vậy \(\left|A\right|=1\)khi và chỉ khi x = -6