K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2023

 P=5x(3x2y-2xy2+1) -3xy (5x2-3xy)=( chỗ này dấu bằng ạ hay là cộng trừ )x2y2

20 tháng 7 2023

huhu là dấu cộng á cậu,tớ đánh nhanh nên bị nhầm dấu. Nhưng mà thui cậu k phải làm nữa âu tại tớ làm xog rui,cảm ơn cậu nhee

HQ
Hà Quang Minh
Giáo viên
12 tháng 1

a)

\(\begin{array}{l}P = 5x\left( {3{x^2}y - 2x{y^2} + 1} \right) - 3xy\left( {5{x^2} - 3xy} \right) + {x^2}{y^2}\\ = 5x.3{x^2}y - 5x.2x{y^2} + 5x.1 - 3xy.5{x^2} + 3xy.3xy + {x^2}{y^2}\\ = 15{x^3}y - 10{x^2}{y^2} + 5x - 15{x^3}y + 9{x^2}{y^2} + {x^2}{y^2}\\ = \left( {15{x^3}y - 15{x^3}y} \right) + \left( { - 10{x^2}{y^2} + 9{x^2}{y^2} + {x^2}{y^2}} \right) + 5x\\ = 5x\end{array}\)

b)

Để \(P = 10 \Leftrightarrow 5x = 10 \Leftrightarrow x = 10:5 \Leftrightarrow x = 2\).

Vậy với x = 2 thì P = 10. 

11 tháng 12 2023

\(A=(x+3y)(x^2-3xy+9y^2)+3y(x+3y)(x-3y)-x(3xy+x^2-5)-5x+1\\A=(x+3y)[x^2-x\cdot3y+(3y)^2]+3y[x^2-(3y)^2]-3x^2y-x^3+5x-5x+1\\A=x^3+(3y)^3+3y(x^2-9y^2)-3x^2y-x^3+1\\A=x^3+27y^3+3x^2y-27y^3-3x^2y-x^3+1\\A=1\)$\Rightarrow$ Giá trị của $A$ không phụ thuộc vào giá trị của biến.

20 tháng 9 2021

2) \(P=\left(2x+1\right)\left(4x^2-2x+1\right)=8x^3+1=8.\left(\dfrac{1}{2}\right)^3+1=8.\dfrac{1}{8}+1=2\)

\(Q=\left(x+3y\right)\left(x^2-3xy+9y^2\right)=x^3+27y^3=1^3+27.\left(\dfrac{1}{3}\right)^3=1+27.\dfrac{1}{27}=2\)

3) \(\left(8x+2\right)\left(1-3x\right)+\left(6x-1\right)\left(4x-10\right)=-50\)

\(\Leftrightarrow-24x^2+2x+2+24x^2-64x+10=-50\)

\(\Leftrightarrow-62x=-62\Leftrightarrow x=1\)

7 tháng 3 2018

x(5x – 3) –  x 2 (x – 1) + x( x 2  – 6x) – 10 + 3x

= x.5x + x.(- 3) – [  x 2 .x + x 2 .(-1)] + x. x 2  +x. (-6x) – 10 + 3x

= 5 x 2  – 3x –  x 3  +  x 2  +  x 3  – 6 x 2  – 10 + 3x

= ( x 3  –  x 3  ) + ( 5 x 2  + x 2  – 6 x 2 ) – (3x - 3x ) - 10

= - 10

Vậy biểu thức không phụ thuộc vào biến x.

AH
Akai Haruma
Giáo viên
21 tháng 11 2023

Lời giải:

Sửa đề đoạn $x-3y$ thành $x+3y$

$A=x^3+(3y)^3+3y(x^2-9y^2)-(3x^2y+7x^2-7x)$

$=x^3+27y^3+3x^2y-27y^3-3x^2y-7x^2+7x$

$=x^3-7x^2+7x$ không phụ thuộc vào giá trị của biến $y$ (đpcm).

b.

Khi $x=-1$ thì:

$A=(-1)^3-7(-1)^2+7(-1)=-1-7-7=-15$

`# \text {04th5}`

`a.`

`P = (5x^2 - 2xy + y^2) - (x^2 + y^2) - (4x^2 - 5xy + 1)`

`= 5x^2 - 2xy + y^2 - x^2 - y^2 - 4x^2 + 5xy - 1`

`= (5x^2 - x^2 - 4x^2) + (-2xy + 5xy) + (y^2 - y^2) - 1`

`= 3xy - 1`

`b.`

\((x^2-5x+4)(2x+3)-(2x^2-x-10)(x-3)\)

`= x^2(2x + 3) - 5x(2x + 3) + 4(2x + 3) - [ 2x^2(x - 3) - x(x - 3) - 10(x - 3)]`

`= 2x^3 + 3x^2 - 10x^2 - 15x + 8x + 12 - (2x^3 - 6x^2 - x^2 + 3x - 19x + 30)`

`= 2x^3 -7x^2 - 7x + 12 - (2x^3 - 7x^2 - 7x + 30)`

`= 2x^3 - 7x^2 - 7x + 12 - 2x^3 + 7x^2 + 7x -30`

`= -30`

Vậy, giá trị của biểu thức không phụ thuộc vào giá trị của biến.

27 tháng 12 2021

\(=5x^2-3x-x^3+x^2+x^3-6x^2-10+3x=0\)

28 tháng 9 2021

\(a,-x^3+\left(x-3\right)\left[\left(2x+1\right)^2-2\left(\dfrac{3}{2}x^2+\dfrac{1}{2}x-4\right)\right]\\ =-x^3+\left(x-3\right)\left(4x^2+4x+1-3x^2-x+8\right)\\ =-x^3+\left(x-3\right)\left(x^2+3x+9\right)\\ =-x^3+\left(x^3-27\right)=-27\)

\(b,\left(x+2y\right)^3-\left(x-3y\right)\left(x^2+3xy+9y^2\right)-6y\left(x^2+2xy-\dfrac{35}{6}y^2\right)\\ =x^3+6x^2y+12xy^2+8y^3-x^3+27y^3-6x^2y-12xy^2+35y^3\\ =0\)