K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: Cho biểu thức: A= (x^2-3/x^2-9  + 1/x-3):x/x+3            a, Rút gọn A.            b, Tìm các giá trị của x để A = 3Bài 2: Cho biểu thức: A = (x/x^2-4 + 1/x+2 - 2/x-2) : (1- x/x+2) Với x khác 2 và -2            a, Rút gọn biểu thức,            b, Tìm các giá trị nguyên của x để A nhận giá trị nguyên.Bài 3: Cho biểu thức A = 2x/x+3 + x+1/x-3 + 3x-11x/9-x^2, với x khác 3 ,...
Đọc tiếp

Bài 1: Cho biểu thức: A= (x^2-3/x^2-9  + 1/x-3):x/x+3

            a, Rút gọn A.

            b, Tìm các giá trị của x để A = 3

Bài 2: Cho biểu thức: A = (x/x^2-4 + 1/x+2 - 2/x-2) : (1- x/x+2) Với x khác 2 và -2

            a, Rút gọn biểu thức,

            b, Tìm các giá trị nguyên của x để A nhận giá trị nguyên.

Bài 3: Cho biểu thức A = 2x/x+3 + x+1/x-3 + 3x-11x/9-x^2, với x khác 3 , -3

            a, Rút gọn biểu thức A.

            b, Tính giá trị của A khi x=5

            c, Tìm gái trị nguyên của x để biểu thức A có giá trị nguyên.

Bài 4: Cho biểu thức: A = (x/x^2-4 + 1/x+2 - 2/x-2) : (1- x/x+2) , với x khác 2 .-2

            a, Rút gọn A.

            b, Tính giá trị của A khi x = -4

            c, Tìm các giá trị nguyên của x để A có giá trị là số nguyên.

1

Bài 1: 

a: \(A=\dfrac{x^2-3+x+3}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{x}=\dfrac{x\left(x+1\right)}{x\left(x-3\right)}=\dfrac{x+1}{x-3}\)

b: Để A=3 thì 3x-9=x+1

=>2x=10

hay x=5

Bài 2: 

a: \(A=\dfrac{x+x-2-2x-4}{\left(x-2\right)\left(x+2\right)}:\dfrac{x+2-x}{x+2}\)

\(=\dfrac{-6}{x-2}\cdot\dfrac{1}{2}=\dfrac{-3}{x-2}\)

b: Để A nguyên thì \(x-2\in\left\{1;-1;3;-3\right\}\)

hay \(x\in\left\{3;1;5;-1\right\}\)

5 tháng 4 2020

a) \(A=\frac{2x}{x+3}+\frac{2}{x-3}+\frac{x^2-x+6}{9-x^2}\left(x\ne\pm3\right)\)

\(\Leftrightarrow A=\frac{2x}{x+3}+\frac{2}{x-3}-\frac{x^2-x+6}{x^2-9}\)

\(\Leftrightarrow A=\frac{2x}{x+3}+\frac{2}{x-3}-\frac{x^2-x+6}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow A=\frac{2x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{2\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{x^2-x+6}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow A=\frac{2x^2-6x+2x+6-x^2+x-6}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow A=\frac{x^2-3x}{\left(x-3\right)\left(x+3\right)}=\frac{x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}=\frac{x}{x+3}\)

Vậy \(A=\frac{x}{x+3}\left(x\ne\pm3\right)\)

b) Ta có \(A=\frac{x}{x+3}\left(x\ne\pm3\right)\)

Để A nhạn giá trị nguyên thì \(\frac{x}{x+3}\)nhận gái trị nguyên

Ta có \(\frac{x}{x+3}=\frac{x+3-3}{x+3}=1-\frac{3}{x+3}\)

=> \(\frac{3}{x+3}\)nguyên thì \(1-\frac{3}{x+3}\)nguyên

=> 3 chia hết cho x+2.

x nguyên => x+3 nguyên => x+3\(\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)

Ta có bảng

x+3-3-113
x-6-4-20

Đối chiếu điều kiện x\(\ne\pm3;x\inℤ\)

=> x={-6;-4;-2;0}

Vậy x={-6;-4;-2;0} thì A nhận giá trị nguyên

a: Thay x=-4 vào B, ta được:

\(B=\dfrac{-4+3}{-4}=\dfrac{-1}{-4}=\dfrac{1}{4}\)

b: \(P=A\cdot B=\dfrac{x^2-3x+2x-9+3x+9}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{x}\)

\(=\dfrac{x^2+2x}{\left(x-3\right)}\cdot\dfrac{1}{x}=\dfrac{x+2}{x-3}\)

c: Để P nguyên thì \(x-3\in\left\{1;-1;5;-5\right\}\)

hay \(x\in\left\{4;2;8;-2\right\}\)

6 tháng 1 2022

cảm on tiên sinh

 

26 tháng 12 2016

\(\frac{x+2}{x+3}-\frac{5}{x^2+x-6}+\frac{1}{2-x}=\frac{x+2}{x+2}+\frac{-5}{x^2+x-6}+\frac{-1}{x-2}\)

=\(\frac{\left(x+2\right)\left(x-2\right)}{x^2+x-6}+\frac{-5}{x^2+x-6}+\frac{-1\left(x+3\right)}{x^2+x-6}=\frac{\left(x+2\right)\left(x-2\right)-5-1\left(x+3\right)}{x^2+x-6}\)

=\(\frac{x^2-4-5-x-3}{x^2+x-6}=\frac{x^2-x-12}{x^2+x+6}\)

\(\frac{x^2-x-12}{x^2+x-6}=\frac{x^2-x-12}{\left(x-2\right)\left(x+3\right)}\)

Để giá trị của PT A được xác định thì \(\left(x-2\right)\ne0\)\(\left(x+3\right)\ne0\)

=> \(x\ne2\)\(x\ne-3\) thì PT được xác định

26 tháng 12 2016

@__@ Lag cả cái đề

2 tháng 1 2023

\(a,đk\left(B\right):x\ne\pm3\\ B=\dfrac{3}{x-3}-\dfrac{6x}{9-x^2}+\dfrac{x}{x+3}\\ =\dfrac{3}{x-3}+\dfrac{6x}{x^2-9}+\dfrac{x}{x+3}\\ =\dfrac{3\left(x+3\right)+6x+x\left(x-3\right)}{x^2-9}\\ =\dfrac{3x+9+6x+x^2-3x}{x^2-9}\\ =\dfrac{x^2+6x+9}{x^2-9}\\ =\dfrac{\left(x+3\right)^2}{x^2-9}\\ =\dfrac{x+3}{x-3}\)

\(b,P=A.B\\ =\dfrac{x+1}{x+3}\times\dfrac{x+3}{x-3}\\ =\dfrac{x+1}{x-3}\)

\(c,\) Để P nguyên 

\(\dfrac{x+1}{x-3}=1+\dfrac{4}{x-3}\)

=> \(x-3\inƯ\left(4\right)\)

\(Ư\left(4\right)=\left\{-1;1;2;-2;4;-4\right\}\)

\(=>x=\left\{2;4;5;1;7;-1\right\}\)

2 tháng 10 2018

Bài 1:

a.\(\left(x+y\right)^2-\left(x-y\right)^2=\left(x+y-x+y\right)\left(x+y+x-y\right)=2\left(x+y\right)\)

b.\(2\left(x+y\right)\left(x-y\right)+\left(x+y\right)^2+\left(x-y\right)^2=\left(x+y+x-y\right)^2=4x^2\)