K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2022

B nhá bạn 

AH
Akai Haruma
Giáo viên
16 tháng 5 2021

Lời giải:

Đặt $\sqrt{x+2}=t(t\geq 0)$ thì pt trở thành:

$t^2-2-2t-m-3=0$

$\Leftrightarrow t^2-2t-(m+5)=0(*)$

Để PT ban đầu có 2 nghiệm pb thì PT $(*)$ có 2 nghiệm không âm phân biệt.

Điều này xảy ra khi \(\left\{\begin{matrix} \Delta'=1+m+5>0\\ S=2>0\\ P=-(m+5)\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m>-6\\ m\leq -5\end{matrix}\right.\)

Đáp án B.

b) Theo hệ thức Vi ét ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{2m-2}{m}\\x_1.x_2=\dfrac{m-1}{m}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=\dfrac{2-2m}{m}\\x_1.x_2=\dfrac{m-1}{m}\end{matrix}\right.\)

Ta có:

\(Q=\dfrac{1013}{x_1}+\dfrac{1013}{x_2}+1=1013\left(\dfrac{1}{x_1}+\dfrac{1}{x_2}\right)+1\)

\(=1013\left(\dfrac{x_1+x_2}{x_1.x_2}\right)+1=1013\left(\dfrac{\dfrac{2-2m}{m}}{\dfrac{m-1}{m}}\right)+1\)

\(=1013.\dfrac{-2\left(m-1\right)}{m-1}+1=-2026+1=-2025\), luôn là hằng số (đpcm)

16 tháng 3 2022

bạn có thể giúp mk giải theo kiểu tự luận đc ko ạ

 

NV
3 tháng 3 2023

Đặt \(\sqrt{x+m}=t\Rightarrow m=t^2-x\)

Pt trở thành:

\(x^2-2x-t=t^2-x\)

\(\Leftrightarrow x^2-t^2-x-t=0\)

\(\Leftrightarrow\left(x+t\right)\left(x-t-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}-x=t\\x-1=t\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}-x=\sqrt{x+m}\left(x\le0\right)\\x-1=\sqrt{x+m}\left(x\ge1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-x=m\left(x\le0\right)\left(1\right)\\x^2-3x+1=m\left(x\ge1\right)\left(2\right)\end{matrix}\right.\)

TH1: (1) có nghiệm duy nhất và (2) vô nghiệm (sử dụng đồ thị hoặc BBT)

\(\Rightarrow\left\{{}\begin{matrix}m\ge0\\\left[{}\begin{matrix}m< -\dfrac{5}{4}\\\end{matrix}\right.\end{matrix}\right.\) (ko tồn tại m thỏa mãn)

TH2: (1) vô nghiệm và (2) có nghiệm duy nhất 

 \(\Rightarrow\left\{{}\begin{matrix}m< 0\\\left[{}\begin{matrix}m=-\dfrac{5}{4}\\m>-1\end{matrix}\right.\end{matrix}\right.\)\(\Rightarrow\left\{-\dfrac{5}{4}\right\}\cup\left(-1;0\right)\)

 

26 tháng 8 2019

Điều kiện xác định: x ≠ 0 .

Đặt  t = x + 1 x ⇒ t 2 − 2 = x 2 + 1 x 2 ≥ 2 ⇒ t ≥ 2 ⇔ t ≥ 2 t ≤ − 2

Phương trình đã cho trở thành  2 t 2 − 2 − 3 t − 2 m + 1 = 0

⇔ 2 t 2 − 3 t − 2 m − 3 = 0 ⇔ 2 t 2 − 3 t − 3 = 2 m      ( 1 )

Xét hàm số y = f ( t ) = 2 t 2 − 3 t − 3 có bảng biến thiên:

(1) Có nghiệm t thỏa mãn t ≥ 2 t ≤ − 2     k h i    2 m ≥ − 1 2 m ≥ 11 ⇔ m ≥ − 1 2 ⇒ S = − 1 2 ; + ∞

Vậy T = 3

Đáp án cần chọn là: D