Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
VT = sin3a.cos^3a + sin^3a.cos3a
= sin3a.cosa.cos^2a + sin^2a.sina.cos3a
= 1/2.(sin2a + sin4a).cos^2a + 1/2.sin^2a.(sin(-2a) + sin4a)
= 1/2.(sin2a + sin4a).cos^2a + 1/2.sin^2a.(sin4a - sin2a)
= 1/2.sin2a.cos^2a + 1/2.sin4a.cos^2a + 1/2.sin^2a.sin4a - 1/2.sin^2a.sin2a
= 1/2.sin2a.(cos^2a - sin^2a) + 1/2.sin4a.(cos^2a + sin^2a)
= 1/2.sin2a.cos2a + 1/2.sin4a
= 1/4.sin4a + 1/2.sin4a
= 3/4.sin4a = VP
=> đpcm
P/s: Chỉ sợ you ko hiểu
Ta có: \(tan\alpha=3=\frac{sin\alpha}{cos\alpha}\Rightarrow sin\alpha=3cos\alpha\)
Suy ra: \(B=\frac{\left(sin\alpha-cos\alpha\right)\left(sin^2\alpha+cos^2\alpha+sin\alpha.cos\alpha\right)}{\left(sin\alpha+cos\alpha\right)\left(sin^2\alpha+cos^2\alpha-sin\alpha.cos\alpha\right)}\)
\(=\frac{2cos\alpha.\left(1+3cos^2\alpha\right)}{4cos\alpha.\left(1-3cos^2\alpha\right)}=\frac{1+3cos^2\alpha}{2.\left(1-3cos^2\alpha\right)}\)
a) sin anpha = 2/3 => góc anpha = 42o
cos 42o = 0,743
tan 42o = 0,9
cot 42o = 1/tan 42o = 1/0,9 = 1,111
b) tan anpha + cot anpha = 3
<=> tan anpha + 1/tan anpha = 3
<=> tan2 anpha = 2
<=> tan anpha = \(\sqrt{2}\)
=> góc anpha = 55o
Ta có: a = sin 55o . cos 55o
<=> a = 0,469
sin3x=sin(2x+x)=sin2xcoxx+cox2xsinx
=2sinxcox^2 x+(1-2sin^2 x)sinx
=2sinxcox^2 x+ sinx-2sin^3 x
=sinx(2cos^2 x +1) - 2sin^3 x
=sinx(2-2sin^2 x +1) - 2sin^3 x
=3sinx - 4 sin^3 x.
cos3x=cox(2x+x)=cos2xcosx-sin2xsinx
=(2cos^2 x-1)cosx-2sin^2 xcosx
=2cos^3 x-cosx-(2-cos^2 x)cosx
=2cos^3 x -cosx-2coxx+2cos^3 x
=4cos^3 x - 3cosx.
=> tan 3a= sin3a/cos3a rồi ra
\(=\frac{\sin^2a}{\sin a-\cos a}-\frac{\sin a+\cos a}{\frac{\sin^2a}{\cos^2a}-1}=\)
\(=\frac{\sin^2a}{\sin a-\cos a}-\frac{\cos^2a\left(\sin a+\cos a\right)}{\sin^2a-\cos^2a}=\)
\(=\frac{\sin^2a\left(\sin a+\cos a\right)-\cos^2a\left(\sin a+\cos a\right)}{\sin^2a-\cos^2a}=\)
\(=\frac{\left(\sin a+\cos a\right)\left(\sin^2a-\cos^2a\right)}{\sin^2a-\cos^2a}=\sin a+\cos a\left(dpcm\right)\)
Tự chứng minh từng cái này rồi suy ra cái đó nhé b.
Ta có: \(sin\frac{A}{2}cos\frac{B}{2}cos\frac{C}{2}-sin\frac{A}{2}sin\frac{B}{2}sin\frac{C}{2}=sin^2\frac{A}{2}\)
Tương tự ta suy ra:
\(sin\frac{A}{2}cos\frac{B}{2}cos\frac{C}{2}+cos\frac{A}{2}sin\frac{B}{2}cos\frac{C}{2}+cos\frac{A}{2}cos\frac{B}{2}sin\frac{C}{2}=sin^2\frac{A}{2}+sin^2\frac{B}{2}+sin^2\frac{C}{2}+3sin\frac{A}{2}sin\frac{B}{2}sin\frac{C}{2}\left(1\right)\)
Tiếp theo chứng minh:
\(2sin\frac{A}{2}sin\frac{B}{2}sin\frac{C}{2}=\frac{cosA+cosB+cosC-1}{2}\left(2\right)\)
\(sin^2\frac{A}{2}+sin^2\frac{B}{2}+sin^2\frac{C}{2}=\frac{3}{2}-\frac{cosA+cosB+cosC}{2}\left(3\right)\)
\(tan\frac{A}{2}tan\frac{B}{2}+tan\frac{B}{2}tan\frac{C}{2}+tan\frac{C}{2}tan\frac{A}{2}=1\left(4\right)\)
Từ (1), (2), (3), (4) suy được điều phải chứng minh
tan a =2/3
=> đặt sin a = 2x thì cos a = 3x
rồi làm tiếp còn cách khác thì k biết làm