Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
Ta có: \(\cos\left(90^0-\alpha\right)=\sin\alpha\)
\(\Leftrightarrow\sin\alpha=1:\sqrt{\dfrac{1^2+2^2}{1}}=1:\sqrt{5}=\dfrac{\sqrt{5}}{5}\)
Câu 2:
a) \(\cos\alpha=\sqrt{1-\sin^2\alpha}=\sqrt{1-\dfrac{16}{25}}=\dfrac{3}{5}\)
\(\tan\alpha=\dfrac{\sin\alpha}{\cos\alpha}=\dfrac{4}{5}:\dfrac{3}{5}=\dfrac{4}{3}\)
( sin a + cos a )^2 = (7/5)^2
=> sin^2 a + cos^2a + 2.sina . cos a = 49/25
=> 1 + 2.sin a . cos a = 49/25
=> 2.sin a + cos a = 49/25 - 1 = 24 / 25
( sin a - cos a )^2 = sin ^2 a + cos ^2a - 2. sin a . cos a = 1 - 24/25 = 1/25
=> sin a - cos a = 1/5 (2)
TA có sina + cos a = 7/5 (1)
Từ (1) và (1) => 2 sina = 8/5 => sin a = 8/5 : 2 = 8/10 = 4/5
=> cos a = sin a - 1/5 = 4/5 - 1/5 = 3/5
tan a = \(\frac{sina}{cosa}=\frac{\frac{4}{5}}{\frac{3}{5}}=\frac{4}{5}\cdot\frac{5}{3}=\frac{4}{3}\)
\(B=\left(sina+cosa\right)^2-\left(cosa-sina\right)^2=\left(sin^2a+2sinacosa+cos^2a\right)-\left(cos^2a-2cosasina+sin^2a\right)=sin^2a+2sinacosa+cos^2a-cos^2a+2cosasina-sin^2a=4sinacosa\)\(A=\dfrac{1+2sinacosa}{sina+cosa}=\dfrac{sin^2a+cos^2a+2cosasina}{sina+cosa}=\dfrac{\left(sina+cosa\right)^2}{sina+cosa}=sina+cosa\)
C mik bó tay
Đặt \(\sin\alpha=x,\cos\alpha=y\)
Ta có hpt:
\(\left\{{}\begin{matrix}x+y=\frac{7}{5}\\x^2+y^2=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x+y=\frac{7}{5}\\xy=\frac{\left(x+y\right)^2-\left(x^2+y^2\right)}{2}=\frac{\left(\frac{7}{5}\right)^2-1}{2}=\frac{12}{25}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\frac{7}{5}-y\\xy=\frac{12}{25}\end{matrix}\right.\)
\(\Rightarrow xy=y\left(\frac{7}{5}-y\right)=\frac{12}{25}\)
\(\Leftrightarrow\frac{7}{5}y-y^2=\frac{12}{25}\Leftrightarrow y^2-\frac{7}{5}y+\frac{12}{25}=0\)
\(\Delta=\frac{49}{25}-4\cdot\frac{12}{25}=\frac{1}{25}>0;\sqrt{\Delta}=\frac{1}{5}\)
phương trình có 2 nghiệm phân biệt:
\(\left\{{}\begin{matrix}y=\frac{\frac{7}{5}+\frac{1}{5}}{2}=\frac{4}{5}\\y=\frac{\frac{7}{5}-\frac{1}{5}}{2}=\frac{3}{5}\end{matrix}\right.\)
Thay vào tìm x ta được các tập nghiệm: \(\left(x,y\right)=\left(\frac{3}{5};\frac{4}{5}\right);\left(\frac{4}{5};\frac{3}{5}\right)\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\sin\alpha=\frac{3}{5}\\\cos\alpha=\frac{4}{5}\end{matrix}\right.\\\left\{{}\begin{matrix}\sin\alpha=\frac{4}{5}\\\cos\alpha=\frac{3}{5}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\tan\alpha=\frac{\frac{3}{5}}{\frac{4}{5}}=\frac{3}{4}\\\tan\alpha=\frac{\frac{4}{5}}{\frac{3}{5}}=\frac{4}{3}\end{matrix}\right.\)
(Áp dụng \(\tan\alpha=\frac{\sin\alpha}{\cos\alpha}\))