K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2015

Ta có: a2014=b2015

=>a2014=b2014.b

=>a2014:b2014=b

=>(a:b)2014=b

=>((a:b)1007)2=b

Vì ((a:b)1007)2>0

=>b>0

=>ĐPCM

7 tháng 9 2015

Vì a khác 0 nên a2014 khác 0 mà a2014 = b2015 => b khác 0 

Lại có a2014  = (a1007)2  > 0 với mọi a khác 0 (Bình phương của một số luôn không âm)

nên b2015 > 0 Hay b2014. b > 0 => b2014 ; b cùng dấu

Mà b2014 > 0 với mọi b khác 0 => b > 0 

10 tháng 9 2017

Có \(\frac{a}{-b}=\frac{a\times\left(-1\right)}{-b\times\left(-1\right)}=\frac{-a}{b}\\\Leftrightarrow\frac{a}{-b}=\frac{-a}{b}\\ \frac{-a}{-b}=\frac{-a\times\left(-1\right)}{-b\times\left(-1\right)}=\frac{a}{b}\Leftrightarrow\frac{-a}{-b}=\frac{a}{b} \)

10 tháng 9 2017

tôi có cách giải ngắn gọn và xúc tích hơn nhìu rồi.

nhưng dù sao thì cx cảm ơn nha

27 tháng 6 2017

Xét hai trường hợp b nguyên dương và b nguyên âm. 

_xét b nguyên dương. Vì a,b cùng dấu nên a nguyên dương. Ta có a/b> 0/b=0. Vậy a/b là số hữu tỉ dương.

_xét b nguyên âm

Ta có -b nguyên dương. Vì a,b cùng dấu nên a nguyên âm. Suy ra a nguyên dương. Do đó a/b= -a/-b> 0/-b = 0. Vậy a/b là số hưu tỉ dương

18 tháng 11 2019

\(\text{Đặt }\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\Rightarrow\hept{\begin{cases}x=ak\\y=bk\\z=ck\end{cases}}\)

Khi đó : \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}=\frac{a^2}{ak}+\frac{b^2}{bk}+\frac{c^2}{ck}=\frac{a}{k}+\frac{b}{k}+\frac{c}{k}=\frac{a+b+c}{k}\left(1\right);\)

\(\frac{\left(a+b+c\right)^2}{x+y+z}=\frac{\left(a+b+c\right)^2}{ak+bk+ck}=\frac{\left(a+b+c\right)^2}{k\left(a+b+c\right)}=\frac{a+b+c}{k}\left(2\right)\)

Từ (1) và (2) => \(\frac{a^2}{x}+\frac{b^2}{y}=\frac{c^2}{z}=\frac{\left(a+b+c\right)^2}{x+y+z}\left(\text{đpcm}\right)\)

18 tháng 11 2019

hình như bạn ghi sai đề rồi kìa

31 tháng 10 2021

Ta có ax + by = c ; by + cz = a

<=> cz - ax = a - c (1)

mà cz + ax = b (2) 

Từ (1) và (2) => \(cz=\frac{a-c+b}{2}\Rightarrow z=\frac{a-c+b}{2c}\Rightarrow z+1=\frac{a+b+c}{2c}\)

=> \(\frac{1}{z+1}=\frac{2c}{a+b+c}\)

Tương tự ta có \(\frac{1}{x+1}=\frac{2a}{a+b+c}\)\(\frac{1}{y+1}=\frac{2b}{a+b+c}\)

=> P = \(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}=\frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}=2\)

9 tháng 12 2018

\(\frac{x}{a-2b+c}=\frac{y}{2a-b-c}=\frac{z}{4a+4b+c}\)

\(=\frac{2y}{4a-2b-2c}=\frac{2x}{2a-4b+2c}=\frac{4x}{4a-8b+4c}=\frac{4y}{8a-4b-4c}\)

áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{x}{a-2b+c}=\frac{2y}{4a-2b-2c}=\frac{z}{4a+4b+c}=\frac{x+2y+z}{9a}\left(1\right)\)

\(\frac{z}{4a+4b+c}=\frac{y}{2a-b-c}=\frac{2x}{2a-4b+2c}=\frac{z-y-2x}{9b}\left(2\right)\)

\(\frac{4x}{4a-8b+4c}=\frac{4y}{8a-4b-4c}=\frac{z}{4a+4b+c}=\frac{4x-4y+z}{9c}\left(3\right)\)

Từ (1),(2),(3) \(\Rightarrow\frac{x+2y+z}{9a}=\frac{z-y-2x}{9b}=\frac{4x-4y+z}{9c}\) \(\Rightarrow\frac{a}{x+2y+z}=\frac{b}{z-y-2x}=\frac{x}{4x-4y+z}\)(ĐPCM)