K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
25 tháng 2 2018
link này : Câu hỏi của haru - Toán lớp 7 - Học toán với OnlineMath
NN
0
LT
0
DG
0
HA
0
29 tháng 12 2018
Đặt x/a+2b+c = y/2a+b-c = z/4a-4b+c = k
=> x = k(a+2b+c) ; y = k(2a+b-c) ; z = (4a-4b+c)k
Sau đấy thay lần lượt vào a/x+2y+z ; b/2x+y-z ; c/4x-4y+z
\(\frac{x}{a-2b+c}=\frac{y}{2a-b-c}=\frac{z}{4a+4b+c}\)
\(=\frac{2y}{4a-2b-2c}=\frac{2x}{2a-4b+2c}=\frac{4x}{4a-8b+4c}=\frac{4y}{8a-4b-4c}\)
áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{x}{a-2b+c}=\frac{2y}{4a-2b-2c}=\frac{z}{4a+4b+c}=\frac{x+2y+z}{9a}\left(1\right)\)
\(\frac{z}{4a+4b+c}=\frac{y}{2a-b-c}=\frac{2x}{2a-4b+2c}=\frac{z-y-2x}{9b}\left(2\right)\)
\(\frac{4x}{4a-8b+4c}=\frac{4y}{8a-4b-4c}=\frac{z}{4a+4b+c}=\frac{4x-4y+z}{9c}\left(3\right)\)
Từ (1),(2),(3) \(\Rightarrow\frac{x+2y+z}{9a}=\frac{z-y-2x}{9b}=\frac{4x-4y+z}{9c}\) \(\Rightarrow\frac{a}{x+2y+z}=\frac{b}{z-y-2x}=\frac{x}{4x-4y+z}\)(ĐPCM)