Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì x+y+z=0;xy+yz+xz=0
⇒(x+y+z)2=x2+y2+z2+2(xy+yz+xz)=0
⇒(x+y+z)2=x2+y2+z2=0
⇒x=y=z=0
⇒S=(x−1)2005+(y−1)2006+(z+1)2007=(−1)2005+(−1)2006+12007=1
Ta có: \(x^2+y^2+z^2\ge xy+yz+zx\)
<=>\(x^2+y^2+z^2+2\left(xy+yz+zx\right)\ge3\left(xy+yz+zx\right)\)<=>\(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)
<=>\(3^2\ge3\left(xy+yz+zx\right)\)<=>\(P=xy+yz+zx\le3\)=>Pmax=3 <=> x=y=z=1
Ta có BĐT đúng sau:
x2 + y2 + z2 >= xy + yz + zx
<=> (x + y + z)2 >= 3(xy + yz + zx)
<=> 9 >= 3 P <=> P <=3 (dấu bằng khi x = y = z =1)
Ta có :x + y + z = -1 \(\Rightarrow\)x + y =-( 1 + z )
xy + yz + xz = 0 \(\Rightarrow\)xy = - z ( x + y ) = z ( z + 1 )
Tương tự : xz = y ( y + 1 ) ; yz = x . ( x + 1 )
\(M=\frac{z\left(z+1\right)}{z}+\frac{y\left(y+1\right)}{y}+\frac{x\left(x+1\right)}{x}=x+y+z+3=2\)
\(0=\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)=x^2+y^2+z^2+0\)
\(\Rightarrow x^2+y^2+z^2=0\)
\(\Rightarrow x=y=z=0\)
\(P=\left(-1\right)^{2003}+0^{2004}+1^{2005}=0\)