K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2016

An nhận nè em.

Gọi vế trái của ( ** ) là T, ta có:

\(T=\frac{m}{2}\left(Y+Y+X\right)+\left(n-\frac{m}{2}\right)X\)

Với \(X=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)\(Y=a+b+c\), theo bài toán 1 ta có \(X\ge3\);\(XY^2\ge27\).

Suy ra:

\(T\ge\frac{m}{2}.3\sqrt[3]{XY^2}+\left(n-\frac{m}{n}\right).3\)( do \(2n\ge m\))

\(\ge\frac{9m}{2}+3\left(n-\frac{m}{n}\right)=3\left(m+n\right)\)

Đẳng thức xảy ra khi và chỉ khi a = b = c = 1.

 

9 tháng 2 2016

coi 3 số là a,b,c =>a=b=c=1

tich ủng hộ nhé

9 tháng 9 2017

11 tháng 2 2016

Áp dụng BĐT Bun nhia cốp xki :

\(\left(9a^3+3b^2+c\right)\left(\frac{1}{9a}+\frac{1}{3}+c\right)\ge\left(a+b+c\right)^2=1\)

<=>\(\frac{1}{9a^3+3b^2+c}\le\frac{1}{9a}+\frac{1}{3}+c\Leftrightarrow\frac{a}{9a^3+3b^2+c}\le a\left(\frac{1}{9a}+\frac{1}{3}+c\right)\) 

<=> \(\frac{a}{9a^3+3b^2+c}\le\frac{1}{9}+\frac{1}{3}a+ac\)

Làm tương tự với 2 cái còn lại 

CỘng vế với vế ba BĐT => GTLN

 

12 tháng 2 2016

tại sao

 $\left(9a^3+3b^2+c\right)\left(\frac{1}{9a}+\frac{1}{3}+c\right)\ge \left(a+b+c\right)^2=1$

 

NV
30 tháng 12 2021

\(P=\dfrac{1}{y}\left(\dfrac{1}{x}+\dfrac{1}{z}\right)\ge\dfrac{1}{y}.\dfrac{4}{x+z}=\dfrac{4}{y\left(x+z\right)}\ge\dfrac{4}{\dfrac{\left(y+x+z\right)^2}{4}}=4\)

\(P_{min}=4\) khi \(\left(x;y;z\right)=\left(\dfrac{1}{2};1;\dfrac{1}{2}\right)\)

31 tháng 12 2021

Anh ơi! Dấu bằng xảy ra là x+y+z =2 và cái nào nữa ạ anh

NV
17 tháng 4 2022

\(P=\dfrac{1}{2}\left(\dfrac{2\sqrt{bc}}{a+2\sqrt{bc}}+\dfrac{2\sqrt{ac}}{b+2\sqrt{ac}}+\dfrac{2\sqrt{ab}}{c+2\sqrt{ab}}\right)\)

\(P=\dfrac{1}{2}\left(1-\dfrac{a}{a+2\sqrt{bc}}+1-\dfrac{b}{b+2\sqrt{ca}}+1-\dfrac{c}{c+2\sqrt{ab}}\right)\)

\(P=\dfrac{3}{2}-\dfrac{1}{2}\left(\dfrac{a}{a+2\sqrt{bc}}+\dfrac{b}{b+2\sqrt{ca}}+\dfrac{c}{c+2\sqrt{ab}}\right)\)

\(P\le\dfrac{3}{2}-\dfrac{1}{2}.\dfrac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2}{a+2\sqrt{bc}+b+2\sqrt{ca}+c+2\sqrt{ab}}=\dfrac{3}{2}-\dfrac{1}{2}.\dfrac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2}{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2}=1\)

\(P_{max}=1\) khi \(a=b=c\)

17 tháng 4 2022

cho em hỏi lại 3 dòng cuối ạ
em chưa hiểu mấy

21 tháng 8 2021

(a2+b2+c2)3(a2+b2+c2)3 ≥ 9(a + b + c)

21 tháng 8 2021

(a2+b2+c2)3(a2+b2+c2)3 ≥ 9(a + b + c)

AH
Akai Haruma
Giáo viên
31 tháng 7 2023

Lời giải:
Áp dụng BĐT Bunhiacopxky:

$(a^2+b^2+c^2)(1+1+1)\geq (a+b+c)^2$

$\Rightarrow a^2+b^2+c^2\geq \frac{(a+b+c)^2}{3}$

$\Rightarrow (a^2+b^2+c^2)^3\geq \frac{(a+b+c)^6}{27}$

Áp dụng BĐT Cô-si: $a+b+c\geq 3\sqrt[3]{abc}=3$

$\Rightarrow (a^2+b^2+c^2)^3\geq \frac{(a+b+c)^6}{27}\geq \frac{(a+b+c).3^5}{27}=9(a+b+c)$
Ta có đpcm

Dấu "=" xảy ra khi $a=b=c=1$

9 tháng 7 2019

#)Giải : 

Áp dụng BĐT Cauchy : 

\(\frac{ab}{c}+\frac{bc}{a}\ge2.\sqrt{\frac{ab}{c}.\frac{bc}{a}}=2b\left(1\right)\)

Chứng minh tương tự, ta được :

\(\frac{bc}{a}+\frac{ca}{b}\ge2c\left(2\right)\)

\(\frac{ab}{c}+\frac{ca}{b}\ge2a\left(3\right)\)

Từ \(\left(1\right)\left(2\right)\left(3\right)\)\(\Rightarrow2\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\right)\ge2\left(a+b+c\right)\)

\(\Rightarrow\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\ge a+b+c\left(đpcm\right)\)

15 tháng 3 2022

Lỗi

NV
15 tháng 3 2022

Ta có:

\(\dfrac{ab}{c}+\dfrac{bc}{a}\ge2\sqrt{\dfrac{ab}{c}.\dfrac{bc}{a}}=2b\)

Tương tự: \(\dfrac{ab}{c}+\dfrac{ca}{b}\ge2a\) ; \(\dfrac{bc}{a}+\dfrac{ca}{b}\ge2c\)

Cộng vế:

\(2P\ge2\left(a+b+c\right)\Rightarrow P\ge a+b+c=1\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)