Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B.
Xét các đáp án:
+ Đáp án A. Ta có (dùng quy tắc hình bình hành; với D là điểm thỏa mãn ABCD là hình bình hành). Vậy A sai.
+ Đáp án B. Ta có
Vậy B đúng.
+ Đáp án C. Ta có (với D là điểm thỏa mãn ABCD là hình bình hành). Vậy C sai.
+ Đáp án D. Ta có . Vậy D sai.
A. \(\sin A = \sin \,(B + C)\)
Ta có: \((\widehat A + \widehat C) + \widehat B= {180^o}\)
\(\Rightarrow \sin \,(B + C) = \sin A\)
=> A đúng.
B. \(\cos A = \cos \,(B + C)\)
Sai vì \(\cos \,(B + C) = - \cos A\)
C. \(\;\cos A > 0\) Không đủ dữ kiện để kết luận.
Nếu \({0^o} < \widehat A < {90^o}\) thì \(\cos A > 0\)
Nếu \({90^o} < \widehat A < {180^o}\) thì \(\cos A < 0\)
D. \(\sin A\,\, \le 0\)
Ta có \(S = \frac{1}{2}bc.\sin A > 0\). Mà \(b,c > 0\)
\( \Rightarrow \sin A > 0\)
=> D sai.
Chọn A
A sai khi c ≤ 0; B sai, chẳng hạn khi a < 0 < b; C sai chẳng hạn khi a < b < 0.
Đáp án: D
A. \({a^2} = {b^2} + {c^2} + \sqrt 2 ab.\) (Loại)
Vì: Theo định lí cos ta có: \({a^2} = {b^2} + {c^2} - 2bc.\cos A\)
Không đủ dữ kiện để suy ra \({a^2} = {b^2} + {c^2} + \sqrt 2 ab.\)
B. \(\frac{b}{{\sin A}} = \frac{a}{{\sin B}}\) (Loại)
Theo định lí sin, ta có: \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} \nRightarrow \frac{b}{{\sin A}} = \frac{a}{{\sin B}}\)
C. \(\sin B = \frac{{ - \sqrt 2 }}{2}\)(sai vì theo câu a, \(\sin B = \frac{{\sqrt 2 }}{2}\))
D. \({b^2} = {c^2} + {a^2} - 2ca\cos {135^o}.\)
Theo định lý cos ta có:
\({b^2} = {c^2} + {a^2} - 2ca.\cos B\) (*)
Mà \(\widehat B = {135^o} \Rightarrow \cos B = \cos {135^o}\).
Thay vào (*) ta được: \({b^2} = {c^2} + {a^2} - 2ca\;\cos {135^o}\)
=> D đúng.
Chọn D
Chọn D. Đây là một tính chất của tích vô hướng.
A. Sai vì \(({\overrightarrow a .\overrightarrow b})\overrightarrow c = [ {|\overrightarrow a |.|\overrightarrow b |\;\,\cos ( {\overrightarrow a ,\overrightarrow b } )} ].\overrightarrow c \ne \)\(\overrightarrow a \,\,( {\overrightarrow b .\overrightarrow c }) = \overrightarrow a \,\,[ {|\overrightarrow b |.|\overrightarrow c |\;\,\cos ( {\overrightarrow b ,\overrightarrow c })}]\)
B. Sai vì \((\overrightarrow a .\overrightarrow b)^2 = {[{\overrightarrow a .\overrightarrow b = | {\overrightarrow a } |.| {\overrightarrow b }|\,\cos ( {\overrightarrow a ,\overrightarrow b })}]^2} = {\overrightarrow a ^2}\,.\,{\overrightarrow b ^2}.{\cos ^2}( {\overrightarrow a ,\overrightarrow b } )\)\( \ne \;\;{\overrightarrow a ^2}\,.\,{\overrightarrow b ^2}\)
C. Sai vì \(\overrightarrow a .\overrightarrow b = | {\overrightarrow a }|.| {\overrightarrow b } |\,\cos ( {\overrightarrow a ,\overrightarrow b }) \ne | {\overrightarrow a }|.| {\overrightarrow b }|\,\sin ( {\overrightarrow a ,\overrightarrow b })\)
Đáp án A. Ta có C A → − B A → = C A → + A B → = C B → = − B C → . Vậy A sai.
Đáp án B. Ta có A B → + A C → = A D → ≠ B C → (với D là điểm thỏa mãn ABDC là hình bình hành). Vậy B sai.
Đáp án C. Ta có A B → + C A → = C A → + A B → = C B → . Vậy C đúng.
Chọn C.
Với ba điểm phân biệt A, B, C ta có:
A B → + C A → = C A → + A B → = C B →
Đáp án B