K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

mọi người giúp em với ạ! Em cảm ơn nhiều lắmmmCâu 1: Trong các khẳng định sau, khẳng định nào sai:A.     a + b < b + c \(\Rightarrow\) a + c < b + cB.     a < b và c < 0 \(\Rightarrow\) ac > bcC.      c < a < b \(\Rightarrow\) ac < bc với c > 0D.     \(\left\{{}\begin{matrix}a< b\\c>0\end{matrix}\right.\Rightarrow ac< bc\) Câu 2: cho hai số thực không âm, bất đẳng thức nào sau đây đúng?A.    \(\sqrt{ab}>\dfrac{a+b}{2}\) B.    \(\sqrt{ab}\le_{ }\dfrac{a+b}{2}\)C.    \(\sqrt{ab} \dfrac{a+b}{2}\)D.    √ab ≤ a+bCâu 3: trong các khẳng định sau, khẳng định...
Đọc tiếp

mọi người giúp em với ạ! Em cảm ơn nhiều lắmmm

Câu 1: Trong các khẳng định sau, khẳng định nào sai:

A.     a + b < b + c \(\Rightarrow\) a + c < b + c

B.     a < b và c < 0 \(\Rightarrow\) ac > bc

C.      c < a < b \(\Rightarrow\) ac < bc với c > 0

D.     \(\left\{{}\begin{matrix}a< b\\c>0\end{matrix}\right.\Rightarrow ac< bc\)

 Câu 2: cho hai số thực không âm, bất đẳng thức nào sau đây đúng?

A.    \(\sqrt{ab}>\dfrac{a+b}{2}\) 

B.    \(\sqrt{ab}\le_{ }\dfrac{a+b}{2}\)

C.    \(\sqrt{ab}< \dfrac{a+b}{2}\)

D.    √ab ≤ a+b

Câu 3: trong các khẳng định sau, khẳng định nào luôn đúng với mọi x

A.    8x > 4x

B.    4x > 8x

C.     8x2 > 4x2

D.    8 + x > 4 + x

 

 

1
8 tháng 5 2021

C1 : A 

C2: B

C3: C

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Diện tích tam giác ABC: \(S = \frac{1}{2}ac.\sin B\)

Mà \(\widehat B = {135^o} \Rightarrow \sin B = \sin {135^o} = \frac{{\sqrt 2 }}{2}\).

\( \Rightarrow S = \frac{1}{2}ac.\frac{{\sqrt 2 }}{2} = \frac{{\sqrt 2 }}{4}.ac\)

Chọn D

17 tháng 8 2023

Ta có:

\(E=\left\{x\in R|x< -3\right\}\)

\(\Rightarrow E=\left\{....;-3\right\}\)

\(\Rightarrow E=\left\{-3;-\infty\right\}\)

Vậy chọn C

Chọn C

15 tháng 12 2018

Ta có

A B → = 1 ; 7 ⇒ A B = 1 2 + 7 2 = 5 2 B C → = − 7 ; 1 ⇒ B C = 5 2 C D → = − 1 ; − 7 ⇒ C D = 5 2 D A → = 7 ; − 1 ⇒ D A = 5 2 ⇒ A B = B C = C D = D A = 5 2 .

Lại có:  A B → . B C → = 1 − 7 + 7.1 = 0  nên A B ⊥ B C .

Từ đó suy ra ABCD là hình vuông.

Chọn C.

9 tháng 2 2017

Dùng phương pháp loại trừ ta Chọn B.

Đáp án B

21 tháng 1 2018

Đáp án D

Ta có thể thấy ngay rằng các khẳng định A và C đều đúng.

là một vectơ chỉ phương của đường thẳng AH.

Vậy D là khẳng định sai.

28 tháng 5 2019

Đáp án D

Ta có:

Ta thấy tam giác ABC cân tại đỉnh A. Do đó, AD đồng thời là đường cao của tam giác ABC nên các khẳng định A, B và C đều đúng.

Vậy khẳng định D sai.

20 tháng 6 2019

Chọn C.

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Chọn D. Đây là một tính chất của tích vô hướng.

A. Sai vì \(({\overrightarrow a .\overrightarrow b})\overrightarrow c  = [ {|\overrightarrow a |.|\overrightarrow b |\;\,\cos ( {\overrightarrow a ,\overrightarrow b } )} ].\overrightarrow c  \ne \)\(\overrightarrow a \,\,( {\overrightarrow b .\overrightarrow c }) = \overrightarrow a \,\,[ {|\overrightarrow b |.|\overrightarrow c |\;\,\cos ( {\overrightarrow b ,\overrightarrow c })}]\)

B. Sai vì \((\overrightarrow a .\overrightarrow b)^2 = {[{\overrightarrow a .\overrightarrow b  = | {\overrightarrow a } |.| {\overrightarrow b }|\,\cos ( {\overrightarrow a ,\overrightarrow b })}]^2} = {\overrightarrow a ^2}\,.\,{\overrightarrow b ^2}.{\cos ^2}( {\overrightarrow a ,\overrightarrow b } )\)\( \ne \;\;{\overrightarrow a ^2}\,.\,{\overrightarrow b ^2}\)

C. Sai vì \(\overrightarrow a .\overrightarrow b = | {\overrightarrow a }|.| {\overrightarrow b } |\,\cos ( {\overrightarrow a ,\overrightarrow b }) \ne | {\overrightarrow a }|.| {\overrightarrow b }|\,\sin ( {\overrightarrow a ,\overrightarrow b })\)