Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(B=3+3^2+3^3+...+3^{120}\)
\(=3\left(1+3+3^2+...+3^{119}\right)⋮3\)
b: \(B=3+3^2+3^3+3^4+...+3^{2020}\)
\(=3\left(1+3\right)+...+3^{2019}\left(1+3\right)\)
\(=4\cdot\left(3+...+3^{2019}\right)⋮4\)
a) \(B=3+3^2+3^3+...+3^{120}\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{199}\left(1+3\right)\)
\(=3.4+3^3.4+3^{199}.4=4\left(3+3^3+...+3^{199}\right)⋮4\)
b) \(B=3+3^2+3^3+...+3^{120}\)
\(=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{198}\left(1+3+3^2\right)\)
\(=3.13+3^4.13+...+3^{198}.13=13\left(3+3^4+...+3^{198}\right)⋮13\)
\(B=3+3^2+3^3+....+3^{120}\)
a, Ta thấy : Cách số hạng của B đều chi hết cho 3
\(B=3+3^2+3^3+....+3^{120}⋮3\)
\(b,B=3+3^2+3^3+....+3^{120}\)
\(B=\left(3+3^2\right)+\left(3^3+3^4\right)+....+\left(3^{119}+3^{120}\right)\)
\(B=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{119}\left(1+3\right)\)
\(B=3.4+3^3.4+...+3^{119}.4\)
\(B=4\left(3+3^3+...+3^{199}\right)\)
Có : \(B=4\left(3+3^3+...+3^{199}\right)⋮4\)
\(\Rightarrow B⋮4\)
\(c,B=3+3^2+3^3+....+3^{120}\)
\(B=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{119}+3^{120}\right)\)
\(B=\left(3+3^2\right)+3^2\left(3+3^2\right)+...+3^{118}\left(3+3^2\right)\)
\(B=13+3^2.13+...+3^{118}.13\)
\(B=13\left(3^2+3^4+...+3^{118}\right)\)
Có : \(B=13\left(3^2+3^4+...+3^{118}\right)⋮13\)
\(\Rightarrow B⋮13\)
1) B = 33 + 34 + 35 + ... + 361 + 362 ( có 60 số, 60 chia hết cho 3)
B = (3^3 + 3^4 + 3^5) + (3^6 + 3^7 + 3^8) + ... + (3^60 + 3^61 + 3^62)
B = 3^3.(1 + 3 + 3^2) + 3^6.(1 + 3 + 3^2) + ... + 3^60.(1 + 3 + 3^2)
B = 3^3.13 + 3^6.13 + ... + 3^60.13
B = 13.(3^3 + 3^6 + ... + 3^60) chia hết cho 13
=> số dư khi chia B cho 13 là 0
2) Do 4a + 3b chia hết cho 7
=> 2.(4a + 3b) chia hết cho 7
=> 8a + 6b chia hết cho 7
=> 7a + a + 7b - b chia hết cho 7
Do 7a + 7b chia hết cho 7 => a - b chia hết cho 7
Ủng hộ mk nha ☆_☆★_★^_-
B = 33 + 34 + 35 + ... + 361 + 362 ( có 60 số, 60 chia hết cho 3)
B = (3^3 + 3^4 + 3^5) + (3^6 + 3^7 + 3^8) + ... + (3^60 + 3^61 + 3^62)
B = 3^3.(1 + 3 + 3^2) + 3^6.(1 + 3 + 3^2) + ... + 3^60.(1 + 3 + 3^2)
B = 3^3.13 + 3^6.13 + ... + 3^60.13
B = 13.(3^3 + 3^6 + ... + 3^60) chia hết cho 13
=> số dư khi chia B cho 13 là 0
2) Do 4a + 3b chia hết cho 7
=> 2.(4a + 3b) chia hết cho 7
=> 8a + 6b chia hết cho 7
=> 7a + a + 7b - b chia hết cho 7
Do 7a + 7b chia hết cho 7 => a - b chia hết cho 7
a/
\(A=3\left(1+3+3^2\right)+...+3^{118}\left(1+3+3^2\right)=\)
\(=13\left(3+3^4+3^7+...+3^{118}\right)⋮13\)
\(A=3\left(1+3+3^2+3^3\right)+...+3^{117}\left(1+3+3^2+3^3\right)=\)
\(A=40\left(3+3^5+3^9+...+3^{117}\right)⋮40\)
b/
\(A=3+3^2\left(1+3+3^2+...+3^{118}\right)=\)
\(=3+9\left(1+3+3^2+...+3^{118}\right)\) chia 9 dư 3 nên A không chia hết cho 9
c/
\(3A=3^2+3^3+3^4+...+3^{121}\)
\(\Rightarrow2A=3A-A=3^{121}-3\Rightarrow2A+3=3^{121}\)
\(2A+3=3^{121}=3.3^{120}=3.\left(3^4\right)^{30}=3.81^{30}\) có tận cùng là 3 nên 2A+3 không phải là số chính phương
a: \(B=3\left(1+3+3^2+...+3^{120}\right)⋮3\)
b: \(B=4\left(3+...+3^{119}\right)⋮4\)