K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2021

\(\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{a^2+ac}{ac+c^2}=\dfrac{a\left(a+c\right)}{c\left(a+c\right)}=\dfrac{a}{c}\left(đpcm\right)\)

10 tháng 10 2021

Thay b2 = ac vào biểu thức trên, ta có:

\(\dfrac{a^2+ac}{ac+c^2}=\dfrac{a\left(a+c\right)}{c\left(a+c\right)}=\dfrac{a}{c}\)

\(\Rightarrow\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{a}{c}\)

4 tháng 11 2019

        Do b2=a.c

suy ra: a2+b2/b2+c

              = a.a+a.c/a.c+c.c

          = a(a+c)/c(a+c)

          = a/c (đpcm)

26 tháng 8 2019

help

19 tháng 4 2018

 ap dung bdt x^2+y^2>=2xy ta co: 
a^2/b^2+c^2/a^2 >=2 c/b 
b^2/c^2+c^2/a^2 >=2 b/a 
a^2/b^2 +b^2/c^2>=2 a/c 
cong thoe tung ve : 
2 VT>= 2VP 
=>VT>=VP(dpcm) 
dau "=" xay ra khi a=b=c

19 tháng 4 2018

Bạn viết dấu được không 

23 tháng 12 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\) (*)

a) Từ (*) ta có:

\(\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{bk}{b\left(k-1\right)}=\dfrac{k}{k-1}\) (1)

\(\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{dk}{d\left(k-1\right)}=\dfrac{k}{k-1}\) (2)

Từ (1) và (2) suy ra \(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)

b) Từ (*) ta có:

\(\dfrac{a}{b}=\dfrac{bk}{b}=k\) (3)

\(\dfrac{a+c}{b+d}=\dfrac{bk+dk}{b+d}=\dfrac{k\left(b+d\right)}{b+d}=k\) (4)

Từ (3) và (4) suy ra \(\dfrac{a}{b}=\dfrac{a+c}{b+d}\)

c) Từ (*) ta có:

\(\dfrac{a}{3a+b}=\dfrac{bk}{3bk+b}=\dfrac{bk}{b\left(3k+1\right)}=\dfrac{k}{3k+1}\) (5)

\(\dfrac{c}{3c+d}=\dfrac{dk}{3dk+d}=\dfrac{dk}{d\left(3k+1\right)}=\dfrac{k}{3k+1}\) (6)

Từ (5) và (6) suy ra \(\dfrac{a}{3a+b}=\dfrac{c}{3c+d}\)

d) Từ (*) ta có:

\(\dfrac{ac}{bd}=\dfrac{bk.dk}{bd}=k^2\) (7)

\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2.k^2+d^2.k^2}{b^2+d^2}=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\) (8)

Từ (7) và (8) suy ra \(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)

e) Từ (*) ta có:

\(\dfrac{ab}{cd}=\dfrac{bk.b}{dk.d}=\dfrac{b^2}{d^2}=\dfrac{b}{d}\) (9)

\(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{b^2.k^2-b^2}{d^2.k^2-d^2}=\dfrac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\dfrac{b}{d}\) (10)

Từ (9) và (10) suy ra \(\dfrac{ab}{cd}=\dfrac{a^2-b^2}{c^2-d^2}\)

f) Từ (*) ta có:

\(\dfrac{ab}{cd}=\dfrac{bk.b}{dk.d}=\dfrac{b^2}{d^2}=\dfrac{b}{d}\) (11)

\(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{\left(bk-b\right)^2}{\left(dk-d\right)^2}=\dfrac{\left[b\left(k-1\right)\right]^2}{\left[d\left(k-1\right)\right]^2}=\dfrac{b}{d}\) (12)

Từ (11) và (12) suy ra \(\dfrac{ab}{cd}=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\)

15 tháng 7 2015

 

Thay \(b^2=a.c\) vào biểu thức

\(\frac{a^2+a.c}{a.c+c^2}=\frac{a\left(a+c\right)}{c\left(a+c\right)}=\frac{a}{c}\)