K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2018

Ta có : 

\(\frac{3a-b}{c}=\frac{3b-c}{a}=\frac{3c-a}{b}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{3a-b}{c}=\frac{3b-c}{a}=\frac{3c-a}{b}=\frac{3a-b+3b-c+3c-a}{a+b+c}=\frac{3\left(a+b+c\right)-\left(a+b+c\right)}{a+b+c}\)

\(=\frac{\left(a+b+c\right)\left(3-1\right)}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=\frac{2}{1}=2\)

Do đó : 

\(\frac{3a-b}{c}=2\)\(\Rightarrow\)\(3a-b=2c\)\(\left(1\right)\)

\(\frac{3b-c}{a}=2\)\(\Rightarrow\)\(3b-c=2a\)\(\left(2\right)\)

\(\frac{3c-a}{b}=2\)\(\Rightarrow\)\(3c-a=2b\)\(\left(3\right)\)

Thay (1), (2) và (3) vào A ta có : 

\(A=\frac{a}{2b-3c}+\frac{b}{2c-3a}+\frac{c}{2a-3b}\)

\(A=\frac{a}{3c-a-3c}+\frac{b}{3a-b-3a}+\frac{c}{3b-c-3b}\)

\(A=\frac{a}{-a}+\frac{b}{-b}+\frac{c}{-c}\)

\(A=\left(-1\right)+\left(-1\right)+\left(-1\right)\)

\(A=-3\)

Vậy \(A=-3\)

Chúc bạn học tốt