Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Não đặc-.-
Nếu sửa đề ntn thì mk nghĩ không ngược dấu mới làm được nek
Bài 1: CMR: \(\frac{a^2+b^2+c^2}{ab+bc+ca}-\frac{8abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\) với a,b,c dương
Bài làm:
Ta có: \(\frac{a^2+b^2+c^2}{ab+bc+ca}-\frac{8abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
\(\ge\frac{a^2+b^2+c^2}{\frac{a^2+b^2}{2}+\frac{b^2+c^2}{2}+\frac{c^2+a^2}{2}}-\frac{8abc}{2\sqrt{ab}\cdot2\sqrt{bc}\cdot2\sqrt{ca}}\)
\(=\frac{a^2+b^2+c^2}{\frac{2\left(a^2+b^2+c^2\right)}{2}}-\frac{8abc}{8abc}\)
\(=1-1=0\)
Dấu "=" xảy ra khi: \(a=b=c\)
Vãi bạn, mình đang đưa các bài tập về các bđt ngược chiều nên đề như thế là đúng r
Có \(VT=ab\left(a+b\right)+ac\left(a+c\right)+bc\left(b+c\right)-\left(a^3+b^3+c^3\right)\)
BĐT cần chứng minh \(\Leftrightarrow ab\left(a+b\right)+ac\left(a+c\right)+bc\left(b+c\right)\le a^3+b^3+c^3+3abc\)
Áp dụng bđt AM-GM có: \(\left(a+b-c\right)\left(a-b+c\right)\le\left[\dfrac{a+b-c+a-b+c}{2}\right]^2=a^2\)
Tương tự cũng có: \(\left(a-b+c\right)\left(b+c-a\right)\le c^2\); \(\left(a+b-c\right)\left(b+c-a\right)\le b^2\)
Nhân vế với vế\(\Rightarrow\left(a+b-c\right)\left(a-b+c\right)\left(c+b-a\right)\le abc\) (lđ)
\(\Leftrightarrow3abc+a^3+b^3+c^3\ge ac\left(a+c\right)+ab\left(a+b\right)+bc\left(b+c\right)\) (BĐT cần chứng minh)
Dấu bằng xảy ra khi a=b=c
\(\frac{\left(a+b\right)^2}{c}+4c\ge2\sqrt{\frac{\left(a+b\right)^2}{c}\cdot4c}=4\left(a+b\right)\\ \frac{\left(b+c\right)^2}{a}+4a\ge2\sqrt{\frac{\left(b+c\right)^2}{a}\cdot4a}=4\left(b+c\right)\\ \frac{\left(c+a\right)^2}{b}+4b\ge2\sqrt{\frac{\left(c+a\right)^2}{b}\cdot4b}=4\left(c+a\right)\\ \Rightarrow\frac{\left(a+b\right)^2}{c}+\frac{\left(b+c\right)^2}{a}+\frac{\left(c+a\right)^2}{b}+4\left(a+b+c\right)\ge8\left(a+b+c\right)\\ \Rightarrow\frac{\left(a+b\right)^2}{c}+\frac{\left(b+c\right)^2}{a}+\frac{\left(c+a\right)^2}{b}\ge4\left(a+b+c\right)\)
Đẳng thức xảy ra khi \(a=b=c\)
Áp dụng BĐT Bu-nhi-a-cốp-ski,ta có :
\(\left(a+b+c+1\right)^2=\left(a.1+\sqrt{3}.\frac{b+c+1}{\sqrt{3}}\right)^2\le\left(a^2+3\right)\left[1+\frac{\left(b+c+1\right)^2}{3}\right]\)
Từ đó bài toán đưa về :
\(\left(b^2+3\right)\left(c^2+3\right)\ge4\left[1+\frac{\left(b+c+1\right)^2}{3}\right]\)
\(\Leftrightarrow b^2c^2+3b^2+3c^2+9\ge4+\frac{4}{3}\left(b^2+c^2+2bc+2b+2c+1\right)\)
\(\Leftrightarrow b^2c^2+\frac{5}{3}b^2+\frac{5}{3}c^2+\frac{11}{3}\ge\frac{8}{3}bc+\frac{8}{3}b+\frac{8}{3}c\)
\(\Leftrightarrow b^2c^2+1-2bc+\frac{b^2+c^2-2bc}{3}+\frac{4}{3}\left(b^2-2b+1\right)+\frac{4}{3}\left(c^2-2c+1\right)\ge0\)
\(\Leftrightarrow\left(bc-1\right)^2+\frac{\left(b-c\right)^2}{3}+\frac{4}{3}\left(b-1\right)^2+\frac{4}{3}\left(c-1\right)^2\ge0\)( luôn đúng )
Dấu "=" xảy ra khi a = b = c = 1
Vậy ....
bđt cần c/m <=>
\(\frac{1}{\left(a+c-b-c\right)^2}+\frac{\left(b+c\right)^2}{\left(a+c\right)^2\left(b+c\right)^2}+\frac{\left(a+c\right)^2}{\left(b+c\right)^2\left(a+c\right)^2}\ge4\\ \)
\(\frac{1}{\left(a+c\right)^2+\left(b+c\right)^2-2}+\left(b+c\right)^2+\left(a+c\right)^2\ge4\\ \)
\(\frac{1}{\left(a+c\right)^2+\left(b+c\right)^2-2}+\left(b+c\right)^2+\left(a+c\right)^2-2\ge2\)(đúng , theo cô-si)
ok
\(P=\dfrac{\left(a^2+abc\right)^2}{a^2b^2+2abc^2}+\dfrac{\left(b^2+abc\right)^2}{b^2c^2+2a^2bc}+\dfrac{\left(c^2+abc\right)}{a^2c^2+2ab^2c}\)
\(P\ge\dfrac{\left(a^2+b^2+c^2+3abc\right)^2}{a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)}=\dfrac{\left(a^2+b^2+c^2+3abc\right)^2}{\left(ab+bc+ca\right)^2}\)
\(P\ge\dfrac{\left[a^2+b^2+c^2+3abc\right]^2}{\left(ab+bc+ca\right)^2}\)
Do đó ta chỉ cần chứng minh \(\dfrac{a^2+b^2+c^2+3abc}{ab+bc+ca}\ge2\)
Ta có: \(abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)
\(\Leftrightarrow abc\ge\left(3-2a\right)\left(3-2b\right)\left(3-2c\right)\)
\(\Leftrightarrow3abc\ge4\left(ab+bc+ca\right)-9\)
\(\Rightarrow\dfrac{a^2+b^2+c^2+3abc}{ab+bc+ca}\ge\dfrac{a^2+b^2+c^2+4\left(ab+bc+ca\right)-9}{ab+bc+ca}\)
\(=\dfrac{\left(a+b+c\right)^2-9+2\left(ab+bc+ca\right)}{ab+bc+ca}=2\) (đpcm)
sai cơ bản rồi bạn ơi : a(a+bc)^2 không bằng dc (a^2+abc)^2
Lời giải:
Ta thấy:
\(\text{VT}=a+2b+c=(a+b+c)+b=1+b(1)\)
Vế phải:
Áp dụng BĐT AM-GM:
\(4(1-a)(1-c)\leq (1-a+1-c)^2=(2-a-c)^2=(1+a+b+c-a-c)^2=(1+b)^2(2)\)
\(\Rightarrow 4(1-a)(1-b)(1-c)\leq (1-b)(1+b)^2\)
Mà : \((1-b)(1+b)^2-(1+b)=(1+b)[(1-b^2)-1]=-b^2(1+b)\leq 0, \forall b\geq 0\)
Do đó: \((1-b)(1+b)^2\leq 1+b(3)\)
Từ (1);(2);(3) ta có đpcm
Dấu bằng xảy ra khi \(a=c=\frac{1}{2}; b=0\)
Không mất tính tổng quát giả sử \(0\le\)a<b<c
Ta có:\(ab+bc+ca\ge bc\)
\(\frac{1}{\left(a-b\right)^2}=\frac{1}{\left(b-a\right)^2}\ge\frac{1}{b^2}\)
TT\(\Rightarrow\frac{1}{\left(c-a\right)^2}\ge\frac{1}{c^2}\)\(\Rightarrow VT\ge bc\left(\frac{1}{b^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{c^2}\right)\)
\(VT\ge\frac{b^2+c^2}{bc}+\frac{bc}{\left(b-c\right)^2}\)
Đặt \(b^2+c^2=x;bc=y\)
\(\Rightarrow VT\ge\frac{x}{y}+\frac{y}{x-2y}\)
Ta cm:\(\frac{x}{y}+\frac{y}{x-2y}\ge4\)
\(\Leftrightarrow x^2-2xy+y^2\ge4xy-8y^2\)
\(\Leftrightarrow\left(x-3y\right)^2\ge0\left(real\right)\)
=>đpcm
"="<=>a=0;\(b^2+c^2=3xy\) và các hoán vị
Áp dụng BĐT Svarxơ:
\(\left(ab+bc+ca\right).\Sigma\frac{1}{\left(a-b\right)^2}\ge\left(ab+bc+ca\right).\frac{9}{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}\)
Ta cần c/m:
\(\frac{9\left(ab+bc+ca\right)}{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}\ge4\)
\(\Rightarrow9\left(ab+bc+ca\right)\ge4\left[2\left(a^2+b^2+c^2\right)-2\left(ab+bc+ca\right)\right]\)
\(\Leftrightarrow17\left(ab+bc+ca\right)\ge8\left(a^2+b^2+c^2\right)\)
Bt làm đến đây thôi.
Nguyễn Việt Lâm Làm tiếp với.
Khôi Bùi Mysterious Person DƯƠNG PHAN KHÁNH DƯƠNG JakiNatsumi