K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2020

Áp dụng BĐT Bu-nhi-a-cốp-ski,ta có :

\(\left(a+b+c+1\right)^2=\left(a.1+\sqrt{3}.\frac{b+c+1}{\sqrt{3}}\right)^2\le\left(a^2+3\right)\left[1+\frac{\left(b+c+1\right)^2}{3}\right]\)

Từ đó bài toán đưa về :

\(\left(b^2+3\right)\left(c^2+3\right)\ge4\left[1+\frac{\left(b+c+1\right)^2}{3}\right]\)

\(\Leftrightarrow b^2c^2+3b^2+3c^2+9\ge4+\frac{4}{3}\left(b^2+c^2+2bc+2b+2c+1\right)\)

\(\Leftrightarrow b^2c^2+\frac{5}{3}b^2+\frac{5}{3}c^2+\frac{11}{3}\ge\frac{8}{3}bc+\frac{8}{3}b+\frac{8}{3}c\)

\(\Leftrightarrow b^2c^2+1-2bc+\frac{b^2+c^2-2bc}{3}+\frac{4}{3}\left(b^2-2b+1\right)+\frac{4}{3}\left(c^2-2c+1\right)\ge0\)

\(\Leftrightarrow\left(bc-1\right)^2+\frac{\left(b-c\right)^2}{3}+\frac{4}{3}\left(b-1\right)^2+\frac{4}{3}\left(c-1\right)^2\ge0\)( luôn đúng )

Dấu "=" xảy ra khi a = b = c = 1

Vậy ....

1 tháng 9 2019

Akai Haruma em có cách khác:3 Cô check giúp em ạ.

Sử dụng nguyên lí Dirichlet ta có thể giả sử \(\left(a^2-1\right)\left(b^2-1\right)\ge0\Rightarrow a^2b^2\ge a^2+b^2-1\)

Suy ra \(a^2b^2+3a^2+3b^2+9\ge4a^2+4b^2+8\)

Suy ra \(\left(a^2+3\right)\left(b^2+3\right)\left(c^2+3\right)\ge\left[\left(2a\right)^2+\left(2b\right)^2+2^2+2^2\right]\left(1+1+1+c^2\right)\)

\(\ge\left(2a+2b+2c+2\right)^2=4\left(a+b+c+1\right)^2\) (Bunyakovski)

Đẳng thức xảy ra khi a = b = c = 1

Ngắn quá:))

AH
Akai Haruma
Giáo viên
31 tháng 8 2019

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\((a^2+3)[1+\frac{1}{3}(b+c+1)^2]\geq (a+b+c+1)^2\)

\(\Leftrightarrow 4(a^2+3)[1+\frac{1}{3}(b+c+1)^2]\geq 4(a+b+c+1)^2\)

Để chứng minh được BĐT đã cho, ta chỉ cần chỉ ra:
\((b^2+3)(c^2+3)\geq 4[1+\frac{(b+c+1)^2}{3}]\)

\(\Leftrightarrow 3b^2c^2+5b^2+5c^2+11-8bc-8b-8c\geq 0\)

\(\Leftrightarrow 3(bc-1)^2+4(b-1)^2+4(c-1)^2+(b-c)^2\geq 0\) (luôn đúng)

Do đó ta có đpcm

Dấu "=" xảy ra khi $a=b=c=1$

21 tháng 8 2017

mình hướng dẫn thôi được không chứ mình đá bóng bị ngã nên giờ bấm giải chi tiết không nổi

21 tháng 8 2017

thôi mình sẽ giải chi tiết luôn nhé chứ hướng dẫn khó hiểu lắm

25 tháng 6 2017

ko cả biết BĐT AM-GM với C-S là gì còn hỏi bài này rảnh háng

26 tháng 6 2017

Đề sai rồi. Nếu như là a, b, c dương thì giá trị nhỏ nhất của nó phải là 9 mới đúng. Còn để có GTNN như trên thì điều kiện là a, b, c không âm nhé. Mà bỏ đi e thi cái gì mà phải giải câu cỡ này. Cậu này mạnh lắm đấy không phải dạng thường đâu.

NV
24 tháng 5 2021

Bài này có bạn giải rồi:

Cho các số thực dương a,b,c.Chứng minh rằng :\(\dfrac{b\left(2a-b\right)}{a\left(b+c\right)}+\dfrac{c\left(2b-c\right)}{... - Hoc24

8 tháng 8 2017

bài này mà giải theo SOS là hơi bị tuyệt vời nhé =)))

8 tháng 8 2017

em moi co lop 7

12 tháng 11 2020

Giả sử \(c=min\left\{a,b,c\right\}\)

Khi đó ta được: \(ab+bc+ca\ge ab;\frac{1}{\left(b-c\right)^2}\ge\frac{1}{b^2};\frac{1}{\left(c-a\right)^2}\ge\frac{1}{a^2}\)

Do đó ta cần chứng minh \(ab\left(\frac{1}{\left(a-b\right)^2}+\frac{1}{a^2}+\frac{1}{b^2}\right)\ge4\)hay \(\frac{ab}{\left(a-b\right)^2}+\frac{\left(a-b\right)^2}{ab}\ge2\)*đúng theo bất đẳng thức Cô - si*

Đẳng thức xảy ra khi \(a^2+b^2=3ab,c=0\)

16 tháng 5 2017

Giả sử c = min(a,b,c), khi đó ab+bc+ca>=ab; 1/(b-c)^2>=1/b^2; 1/(c-a)^2>=1/a^2. Ta cần chứng minh: ab(1/(a-b)^2 +1/b^2 + 1/a^2 )>=4. Bằng cách biến đổi tương đương ta được: [ab/(a-b)^2 +a/b + b/a]>=4 <=> ab/(a-b)^2 +a/b+b/a-4>=0 <=>ab/(a-b)^2 + (a^2+b^2-4ab)/ab>=0 <=> ab/(a-b)^2 +[(a-b)^2-2ab]/ab>=0 <=> ab/(a-b)^2 +(a-b)^2/ab - 2 >=0 (1).

Đặt k = ab/(a-b)^2>=0 => (a-b)^2 = 1/k >0. 

Áp dụng BĐT Cosi cho k và 1/k => k+1/k >=2 căn(k.1/k)=2 => k+1/k-2>=0 => (1) đã được chứng minh.

Vậy (ab+bc+ca)[1/(a-b)^2 + 1/(b-c)^2 + 1/(c-a)^2]>=4. 

Dấu bằng xảy ra khi c = 0 và k=1/k => k^2=1 => a^2b^2=(a-b)^4 => (a-b)^2=ab => a^2+b^2-2ab=ab => a^2-3ab+b^2 = 0. Xem đây là PT bậc hai theo a với hệ số theo b. Lập Delta = 9b^2-4b^2 = 5b^2 => a = (3b+bcăn 5)/2 hoặc a = (3b-bcăn 5)/2.

NV
13 tháng 1

Trước hết theo BĐT Schur bậc 3 ta có:

\(\left(a+b+c\right)\left(a^2+b^2+c^2\right)+9abc\ge2\left(a+b+c\right)\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2+3abc\ge2\left(ab+bc+ca\right)\) (do \(a+b+c=3\)) (1)

Đặt vế trái BĐT cần chứng minh là P, ta có:

\(P=\dfrac{\left(a^2+abc\right)^2}{a^2b^2+2abc^2}+\dfrac{\left(b^2+abc\right)^2}{b^2c^2+2a^2bc}+\dfrac{\left(c^2+abc\right)^2}{a^2c^2+2ab^2c}\)

\(\Rightarrow P\ge\dfrac{\left(a^2+b^2+c^2+3abc\right)^2}{a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)}=\dfrac{\left(a^2+b^2+c^2+3abc\right)^2}{\left(ab+bc+ca\right)^2}\)

Áp dụng (1):

\(\Rightarrow P\ge\dfrac{\left[2\left(ab+bc+ca\right)\right]^2}{\left(ab+bc+ca\right)^2}=4\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

13 tháng 1

Anh giúp em câu này ạ, câu này hơi khó anh ạ, làm chắc cũng lâu, có gì anh để mai cũng được ạ! 

https://hoc24.vn/cau-hoi/cho-hinh-chop-sabcd-co-day-la-hinh-binh-hanh-m-va-p-la-hai-diem-lan-luot-di-dong-tren-ad-va-sc-sao-cho-mamd-pspc-x-x0-mat-phang-a-di-qua-m-va-song-song-voi-sab-cat-hinh-chop-sabcd-t.8753881358034