K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2020

Ta sẽ chứng minh: \(\sqrt{\frac{x^4+1}{2}}+\frac{4x^2}{x^2+1}\ge3x\)

Thật vậy: \(\Leftrightarrow\left(\sqrt{\frac{x^4+1}{2}}-x\right)+2\left(\frac{2x^2}{x^2+1}-x\right)\ge0\)

\(\Leftrightarrow\left(x-1\right)^2\left[\frac{\left(x+1\right)^2}{2\sqrt{\frac{x^4+1}{2}}+2x}-\frac{2x}{x^2+1}\right]\ge0\)

Bây giờ ta quy về chứng minh: \(\frac{\left(x+1\right)^2}{2\sqrt{\frac{x^4+1}{2}}}\ge\frac{2x}{x^2+1}\Leftrightarrow\left(x^2+1\right)\left(x+1\right)^2\ge4x\left(\sqrt{\frac{x^4+1}{2}+x}\right)\)

\(\Leftrightarrow x^4+1+2x^3+2x\ge2x^2+4x\sqrt{\frac{x^4+1}{2}}\)

\(\Leftrightarrow\frac{x^4+1}{2}+x^3+x\ge x^2+2x\sqrt{\frac{x^4+1}{2}}\)

Bất đẳng thức trên đúng theo AM - GM:

\(\frac{x^4+1}{2}+x^3+x\ge\left(\frac{x^4+1}{2}+x^2\right)+x^2\ge2x\sqrt{\frac{x^4+1}{2}}+x^2\)

Vậy hoàn tất chứng minh trên nên ta có:

\(\sqrt{\frac{a^2+1}{2}}+\frac{4a}{a+1}\ge3\sqrt{a}\);\(\sqrt{\frac{b^2+1}{2}}+\frac{4b}{b+1}\ge3\sqrt{b}\)

\(\sqrt{\frac{c^2+1}{2}}+\frac{4c}{c+1}\ge3\sqrt{c}\)\(\sqrt{\frac{d^2+1}{2}}+\frac{4c}{d+1}\ge3\sqrt{d}\)

Cộng từng vế của các bđt trên. ta được: \(\text{Σ}_{cyc}\sqrt{\frac{a^2+1}{2}}\ge3\left(\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{d}\right)\)

\(-4\left(\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}+\frac{d}{d+1}\right)\)\(=3\left(\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{d}\right)-8\)

Dấu "=" xảy ra khi a = b = c = 1 

8 tháng 3 2020

Hỏi đáp Toán

Hỏi đáp Toán

Chúc bạn học tốt !!

NV
5 tháng 3 2019

2/

a/ \(\sqrt{a}+\frac{1}{\sqrt{a}}\ge2\sqrt{\sqrt{a}.\frac{1}{\sqrt{a}}}=2\), dấu "=" khi \(a=1\)

b/ \(a+b+\frac{1}{2}=a+\frac{1}{4}+b+\frac{1}{4}\ge2\sqrt{a.\frac{1}{4}}+2\sqrt{b.\frac{1}{4}}=\sqrt{a}+\sqrt{b}\)

Dấu "=" khi \(a=b=\frac{1}{4}\)

c/ Có lẽ bạn viết đề nhầm, nếu đề đúng thế này thì mình ko biết làm

Còn đề như vậy: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\) thì làm như sau:

\(\frac{1}{x}+\frac{1}{y}\ge\frac{2}{\sqrt{xy}}\) ; \(\frac{1}{y}+\frac{1}{z}\ge\frac{2}{\sqrt{yz}}\); \(\frac{1}{x}+\frac{1}{z}\ge\frac{2}{\sqrt{yz}}\)

Cộng vế với vế ta được:

\(\frac{2}{x}+\frac{2}{y}+\frac{2}{z}\ge\frac{2}{\sqrt{xy}}+\frac{2}{\sqrt{yz}}+\frac{2}{\sqrt{xz}}\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\)

Dấu "=" khi \(x=y=z\)

d/ \(\frac{\sqrt{3}+2}{\sqrt{3}-2}-\frac{\sqrt{3}-2}{\sqrt{3}+2}=\frac{\left(\sqrt{3}+2\right)\left(\sqrt{3}+2\right)}{\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)}-\frac{\left(\sqrt{3}-2\right)\left(\sqrt{3}-2\right)}{\left(\sqrt{3}+2\right)\left(\sqrt{3}-2\right)}\)

\(=\frac{7+4\sqrt{3}}{3-4}-\frac{7-4\sqrt{3}}{3-4}=-7-4\sqrt{3}+7-4\sqrt{3}=-8\sqrt{3}\)

e/ \(\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{ab}}:\frac{1}{\sqrt{a}-\sqrt{b}}=\frac{\left(\sqrt{a}\right)^3+\left(\sqrt{b}\right)^3}{\sqrt{ab}}.\left(\sqrt{a}-\sqrt{b}\right)\)

\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}=\frac{\left(a-b\right)\left(a+b-\sqrt{ab}\right)}{\sqrt{ab}}\)

\(=\frac{a^2-b^2}{\sqrt{ab}}-\left(a-b\right)\) (bạn chép đề sai)

5 tháng 3 2019

@Akai Haruma Cô giúp em với ạ!!!

26 tháng 6 2016

3a) ta có \(\frac{a^2}{a+b}=a-\frac{ab}{a+b}>=a-\frac{ab}{2\sqrt{ab}}=a-\frac{\sqrt{ab}}{2}\)

vì \(a,b>0,a+b>=2\sqrt{ab}nên\frac{ab}{a+b}< =\frac{ab}{2\sqrt{ab}}\)

tương tự \(\frac{b^2}{b+c}=b-\frac{bc}{b+c}>=b-\frac{bc}{2\sqrt{bc}}=b-\frac{\sqrt{bc}}{2}\)

tương tự \(\frac{c^2}{c+a}=c-\frac{ca}{c+a}>=c-\frac{ca}{2\sqrt{ca}}=c-\frac{\sqrt{ca}}{2}\)

cộng từng vế BĐT ta được \(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}>=a+b+c-\frac{\sqrt{ab}}{2}-\frac{\sqrt{bc}}{2}-\frac{\sqrt{ca}}{2}=\frac{2a+2b+2c-\sqrt{ab}-\sqrt{bc}-\sqrt{ca}}{2}\left(1\right)\)

giả sử \(\frac{2a+2b+2c-\sqrt{ab}-\sqrt{bc}-\sqrt{ca}}{2}>=\frac{a+b+c}{2}\)

<=> \(2a+2b+2c-\sqrt{ab}-\sqrt{bc}-\sqrt{ca}>=a+b+c\)

<=> \(a+b+c-\sqrt{ab}-\sqrt{bc}-\sqrt{ca}>=0\)

<=> \(2a+2b+2c-2\sqrt{ab}-2\sqrt{bc}-2\sqrt{ca}>=0\)

<=> \(\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+\left(\sqrt{a}-\sqrt{c}\right)^2>=0\)

(đúng với mọi a,b,c >0) (2)

(1),(2)=> \(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}>=\frac{a+b+c}{2}\left(đpcm\right)\)

17 tháng 6 2019

đề bài

cm 

1/a+2 + 1/b+2 +1/c+2 <=1

bn p viết đề chứ???

##thiêndi###