Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cauchy ta có:
\(\frac{a}{1+b^2}=\frac{a\left(1+b^2\right)-ab^2}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab}{2}\)
Áp dụng tương tự ta được
\(\frac{b}{1+c^2}\ge b-\frac{bc}{2};\frac{c}{1+d^2}\ge c-\frac{cd}{2};\frac{d}{1+a^2}\ge c-\frac{da}{2}\)
Tương tự ta cũng được
\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+d^2}+\frac{d}{1+a^2}=\frac{\left(a+c\right)\left(b+d\right)}{2}\le\frac{\left(a+b+c+d\right)^2}{8}=2\)
Do vậy ta được \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+d^2}+\frac{d}{1+a^2}\ge2\)
Dấu "=" xảy ra khi a=b=c=d=1
Cho a,b,c,d là các số dương thỏa mãn a^2 + b^2=1 và a^4/c+b^4/d=1/c+d.Chứng minh rằng:a^2/c+d/b^2>=2
Cho các số dương a,b,c,d thỏa mãn diều kiện a+b+c+d=4. Tìm \(P=3\left(a^2+b^2+c^2+d^2\right)+4abcd\)
b, Ta có \(m=a+b+c\)
\(\Rightarrow am+bc=a\left(a+b+c\right)+bc=a\left(a+b\right)+ac+bc=\left(a+c\right)\left(a+b\right)\)
CMTT \(bm+ac=\left(b+c\right)\left(b+a\right)\);\(cm+ab=\left(c+a\right)\left(c+b\right)\)
Suy ra \(\left(am+bc\right)\left(bm+ac\right)\left(cm+ab\right)=\left(a+b\right)^2\left(a+c\right)^2\left(b+c\right)^2\)