Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VT=\dfrac{a^3bc}{c+ab^2c}+\dfrac{ab^3c}{a+abc^2}+\dfrac{abc^3}{b+a^2bc}\)
\(=abc\left(\dfrac{a^2}{c+ab^2c}+\dfrac{b^2}{a+abc^2}+\dfrac{c^2}{b+a^2bc}\right)\)
Áp dụng bđt Cauchy-Schwarz dạng engel có:
\(VT\ge\dfrac{abc\left(a+b+c\right)^2}{a+b+c+abc\left(a+b+c\right)}\)\(=\dfrac{abc\left(a+b+c\right)}{1+abc}\)
Dấu "=" xảy ra khi \(a=b=c\)
Vậy...
Sai đề không bạn,tại a=b=c=2 thay vào không thỏa mãn nha
Do \(abc=1\Rightarrow\) đặt \(\left(a;b;c\right)=\left(\dfrac{x}{y};\dfrac{y}{z};\dfrac{z}{x}\right)\)
\(VT=\dfrac{xz}{y\left(x+z\right)}+\dfrac{xy}{z\left(x+y\right)}+\dfrac{yz}{x\left(y+z\right)}=\dfrac{\left(xz\right)^2}{xyz\left(x+z\right)}+\dfrac{\left(xy\right)^2}{xyz\left(x+y\right)}+\dfrac{\left(yz\right)^2}{xyz\left(y+z\right)}\)
\(VT\ge\dfrac{\left(xy+yz+zx\right)^2}{2xyz\left(x+y+z\right)}\ge\dfrac{3xyz\left(x+y+z\right)}{2xyz\left(x+y+z\right)}=\dfrac{3}{2}\)
Dấu "=" xảy ra khi \(x=y=z\) hay \(a=b=c=1\)
Vì abc=1 nên tồn tại x,y,z sao cho \(a=\dfrac{x}{y};b=\dfrac{y}{z};c=\dfrac{z}{x}\)
\(VT=\sum\dfrac{a}{ab+1}=\sum\dfrac{\dfrac{x}{y}}{\dfrac{x}{y}.\dfrac{y}{z}+1}=\sum\dfrac{xz}{xy+yz}\)
Đổi \(\left(xy;yz;zx\right)=\left(m,n,p\right)\)thì \(VT=\sum\dfrac{m}{n+p}\ge\dfrac{3}{2}\left(BĐT-Nesbit\right)\)( đpcm)
Dấu = xảy ra khi m=n=p hay x=y=z hay a=b=c=1.
\(\dfrac{a+b}{ab+c^2}=\dfrac{\left(a+b\right)^2}{\left(ab+c^2\right)\left(a+b\right)}=\dfrac{\left(a+b\right)^2}{b\left(a^2+c^2\right)+a\left(b^2+c^2\right)}\le\dfrac{a^2}{b\left(a^2+c^2\right)}+\dfrac{b^2}{a\left(b^2+c^2\right)}\)
Tương tự:
\(\dfrac{b+c}{bc+a^2}\le\dfrac{b^2}{c\left(a^2+b^2\right)}+\dfrac{c^2}{b\left(a^2+c^2\right)}\) ; \(\dfrac{c+a}{ca+b^2}\le\dfrac{c^2}{a\left(b^2+c^2\right)}+\dfrac{a^2}{c\left(a^2+b^2\right)}\)
Cộng vế:
\(VT\le\dfrac{1}{a}\left(\dfrac{b^2}{b^2+c^2}+\dfrac{c^2}{b^2+c^2}\right)+\dfrac{1}{b}\left(\dfrac{a^2}{a^2+c^2}+\dfrac{c^2}{a^2+c^2}\right)+\dfrac{1}{c}\left(\dfrac{a^2}{a^2+b^2}+\dfrac{b^2}{a^2+b^2}\right)=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
\(\dfrac{\sqrt{ab+2c^2}}{\sqrt{1+ab-c^2}}=\dfrac{\sqrt{ab+2c^2}}{\sqrt{a^2+b^2+ab}}=\dfrac{ab+2c^2}{\sqrt{\left(a^2+b^2+ab\right)\left(ab+2c^2\right)}}\ge\dfrac{2\left(ab+2c^2\right)}{a^2+b^2+2ab+2c^2}\)
\(\ge\dfrac{2\left(ab+2c^2\right)}{a^2+b^2+a^2+b^2+2c^2}=\dfrac{ab+2c^2}{a^2+b^2+c^2}=ab+2c^2\)
Tương tự và cộng lại:
\(VT\ge ab+bc+ca+2\left(a^2+b^2+c^2\right)=2+ab+bc+ca\)
Đề đung đúng :D
\(\dfrac{a}{bc}+\dfrac{b}{ca}+\dfrac{c}{ab}\ge2\left(\dfrac{1}{a}+\dfrac{1}{b}-\dfrac{1}{c}\right)\)
\(\Leftrightarrow\dfrac{a^2+b^2+c^2}{abc}\ge2\left(\dfrac{ab+bc-ca}{abc}\right)\)
\(\Leftrightarrow a^2+b^2+c^2\ge2\left(ab+bc-ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2-2ab-2bc+2ca\ge0\)
\(\Leftrightarrow\left(c+a-b\right)^2\ge0\)
Vậy ta có đpcm
Lời giải:Áp dụng BĐT AM-GM và BĐT Cauchy-Schwarz:
\(\frac{bc}{a^2+1}=\frac{bc}{(a^2+b^2)+(a^2+c^2)}\leq \frac{1}{4}.\frac{(b+c)^2}{(a^2+b^2)+(a^2+c^2)}\leq \frac{1}{4}\left(\frac{b^2}{a^2+b^2}+\frac{c^2}{a^2+c^2}\right)\)
Hoàn toàn tương tự với các phân thức còn lại, ta có:
\(P\leq \frac{1}{4}\left(\frac{b^2+a^2}{a^2+b^2}+\frac{c^2+a^2}{a^2+c^2}+\frac{b^2+c^2}{b^2+c^2}\right)=\frac{3}{4}\)
(đpcm)
Dấu "=" xảy ra khi $a=b=c=\sqrt{\frac{1}{3}}$
Đặt A = \(\dfrac{a-b}{1+c^2}+\dfrac{b-c}{1+a^2}+\dfrac{c-a}{1+b^2}=0\)
= \(\dfrac{a-b}{c^2+ab+bc+ca}+\dfrac{b-c}{a^2+ab+bc+ca}+\dfrac{c-a}{b^2+ab+bc+ca}\)
= \(\dfrac{a-b}{\left(c+a\right)\left(c+b\right)}+\dfrac{b-c}{\left(a+b\right)\left(c+a\right)}+\dfrac{c-a}{\left(a+b\right)\left(b+c\right)}\)
= \(\dfrac{\left(a-b\right)\left(a+b\right)+\left(b-c\right)\left(b+c\right)+\left(c+a\right)\left(c-a\right)}{\left(c+a\right)\left(b+c\right)\left(a+b\right)}\)
= \(\dfrac{a^2-b^2+b^2-c^2+c^2-a^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=0\)
\(\dfrac{a-b}{1+c^2}+\dfrac{b-c}{1+a^2}+\dfrac{c-a}{1+b^2}\)
\(=\dfrac{a-b}{ab+bc+ca+c^2}+\dfrac{b-c}{ab+bc+ca+a^2}+\dfrac{c-a}{ab+bc+ca+b^2}\)
\(=\dfrac{a-b}{\left(c+a\right)\left(c+b\right)}+\dfrac{b-c}{\left(a+b\right)\left(a+c\right)}+\dfrac{c-a}{\left(b+a\right)\left(b+c\right)}\)
\(=\dfrac{\left(a-b\right)\left(a+b\right)+\left(b-c\right)\left(b+c\right)+\left(c-a\right)\left(c+a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
\(=\dfrac{a^2-b^2+b^2-c^2+c^2-a^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=0\)
Ta có
\(\dfrac{1}{ab+b+1}+\dfrac{1}{bc+c+1}+\dfrac{1}{ca+a+1}\)
\(=\dfrac{abc}{ab+b+abc}+\dfrac{abc}{bc+c+abc}+\dfrac{1}{ca+a+1}\)
\(=\dfrac{abc}{b\left(ac+a+1\right)}+\dfrac{abc}{c\left(ab+b+1\right)}+\dfrac{1}{ac+a+1}\)
\(=\dfrac{ac}{ac+a+1}+\dfrac{ab}{ab+b+1}+\dfrac{1}{ac+a+1}\)
\(=\dfrac{ac+1}{ac+a+1}+\dfrac{ab}{ab+b+abc}\)
\(=\dfrac{ac+1}{ac+a+1}+\dfrac{ab}{b\left(ac+a+1\right)}=\dfrac{ac+a+1}{ac+a+1}=1\) (đpcm)
Ta có: \(\dfrac{1}{ab+b+1}+\dfrac{1}{bc+c+1}+\dfrac{1}{ca+a+1}\)
=\(\dfrac{1}{ab+b+1}+\dfrac{abc}{bc+c+abc}+\dfrac{b}{abc+ab+b}\)
=\(\dfrac{1}{ab+b+1}+\dfrac{abc}{c\left(ab+b+1\right)}+\dfrac{b}{ab+b+1}\)
=\(\dfrac{1}{ab+b+1}+\dfrac{ab}{ab+b+1}+\dfrac{b}{ab+b+1}\)
=\(\dfrac{ab+b+1}{ab+b+1}\)=1
Suy ra:
\(\dfrac{1}{ab+b+1}+\dfrac{1}{bc+c+1}+\dfrac{1}{ca+a+1}\)=1(abc=1)
(đpcm)