K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2017

\(\dfrac{1}{1+a+ab}+\dfrac{a}{a+ab+abc}+\dfrac{1}{abc+ac+c}\)

\(=\dfrac{1}{1+a+ab}+\dfrac{a}{1+a+ab}+\dfrac{1}{c\left(1+a+ab\right)}\)

\(=\dfrac{ac+c+1}{c\left(1+a+ab\right)}=\dfrac{c\left(a+1+ab\right)}{c\left(1+a+ab\right)}=1\)

23 tháng 6 2021

\(VT=\dfrac{a^3bc}{c+ab^2c}+\dfrac{ab^3c}{a+abc^2}+\dfrac{abc^3}{b+a^2bc}\)

\(=abc\left(\dfrac{a^2}{c+ab^2c}+\dfrac{b^2}{a+abc^2}+\dfrac{c^2}{b+a^2bc}\right)\)

Áp dụng bđt Cauchy-Schwarz dạng engel có:

\(VT\ge\dfrac{abc\left(a+b+c\right)^2}{a+b+c+abc\left(a+b+c\right)}\)\(=\dfrac{abc\left(a+b+c\right)}{1+abc}\)

Dấu "=" xảy ra khi \(a=b=c\)

Vậy...

23 tháng 6 2021

Sai đề không bạn,tại a=b=c=2 thay vào không thỏa mãn nha

NV
3 tháng 8 2021

Do \(abc=1\Rightarrow\) đặt \(\left(a;b;c\right)=\left(\dfrac{x}{y};\dfrac{y}{z};\dfrac{z}{x}\right)\)

\(VT=\dfrac{xz}{y\left(x+z\right)}+\dfrac{xy}{z\left(x+y\right)}+\dfrac{yz}{x\left(y+z\right)}=\dfrac{\left(xz\right)^2}{xyz\left(x+z\right)}+\dfrac{\left(xy\right)^2}{xyz\left(x+y\right)}+\dfrac{\left(yz\right)^2}{xyz\left(y+z\right)}\)

\(VT\ge\dfrac{\left(xy+yz+zx\right)^2}{2xyz\left(x+y+z\right)}\ge\dfrac{3xyz\left(x+y+z\right)}{2xyz\left(x+y+z\right)}=\dfrac{3}{2}\)

Dấu "=" xảy ra khi \(x=y=z\) hay \(a=b=c=1\)

NV
8 tháng 6 2021

\(c\left(1+ab\right)\le c\left(1+\dfrac{a^2+b^2}{2}\right)=c\left(1+\dfrac{1-c^2}{2}\right)=1-\dfrac{1}{2}\left(c-1\right)^2\left(c+2\right)\le1\)

\(\Rightarrow c^2\left(1+ab\right)\le c\Rightarrow\dfrac{c}{1+ab}\ge c^2\)

Hoàn toàn tương tự ta có: \(\dfrac{a}{1+bc}\ge a^2\) ; \(\dfrac{b}{1+ac}\ge b^2\)

Cộng vế: \(VT\ge a^2+b^2+c^2=1\) (đpcm)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(0;0;1\right)\) và các hoán vị

AH
Akai Haruma
Giáo viên
9 tháng 6 2021

Cách 2:

Áp dụng BĐT Bunhiacopxky:

\(\text{VT}[a(1+bc)+b(1+ac)+c(1+ab)]\geq (a+b+c)^2\)

\(\Rightarrow \text{VT}\geq \frac{(a+b+c)^2}{a+b+c+3abc}\)

 Ta sẽ CM: 

\(\frac{(a+b+c)^2}{a+b+c+3abc}\geq 1\)

\(\Leftrightarrow 1+2(ab+bc+ac)\geq a+b+c+3abc\)

Vì $a^2+b^2+c^2=1\Rightarrow a,b,c\leq 1$

$\Rightarrow (a-1)(b-1)(c-1)\leq 0$

$\Leftrightarrow 1+ ab+bc+ac\geq a+b+c+abc(1)$

Áp dụng BĐT AM-GM:

$ab+bc+ac\geq 3\sqrt[3]{a^2b^2c^2}\geq 3\sqrt[3]{a^2b^2c^2.abc}=3abc\geq 2abc(2)$

Từ $(1);(2)\Rightarrow 1+2(ab+bc+ac)\geq a+b+c+3abc$

Ta có đpcm

Dấu "=" xảy ra khi $(a,b,c)=(1,0,0)$ và hoán vị.

AH
Akai Haruma
Giáo viên
30 tháng 11 2018

Lời giải:

Áp dụng BĐT AM-GM (Cô-si)

\(1+a^3+b^3\geq 3\sqrt[3]{a^3b^3}=3ab\)

\(\Rightarrow \frac{\sqrt{1+a^3+b^3}}{ab}\geq \frac{\sqrt{3ab}}{ab}=\frac{c\sqrt{3ab}}{abc}=c\sqrt{3ab}=\sqrt{c}.\sqrt{3abc}=\sqrt{3c}\)

Hoàn toàn tương tự:

\(\frac{\sqrt{1+b^3+c^3}}{bc}\geq \sqrt{3a}\)

\(\frac{\sqrt{1+a^3+c^3}}{ac}\geq \sqrt{3b}\)

Cộng theo vế những BĐT vừa thu được ta có:

\(\frac{\sqrt{a^3+b^3+1}}{ab}+\frac{\sqrt{b^3+c^3+1}}{bc}+\frac{\sqrt{c^3+a^3+1}}{ac}\geq \sqrt{3}(\sqrt{a}+\sqrt{b}+\sqrt{c})\)

\(\geq \sqrt{3}.3\sqrt[3]{\sqrt{a}.\sqrt{b}.\sqrt{c}}=\sqrt{3}.3\sqrt[6]{abc}=3\sqrt{3}\) (áp dụng BĐT Cô-si)

Ta có đpcm

Dấu "=" xảy ra khi $a=b=c=1$

1 tháng 12 2018

cảm ơn nhiều nhé

3 tháng 1 2019

Ta có

\(\dfrac{1}{ab+b+1}+\dfrac{1}{bc+c+1}+\dfrac{1}{ca+a+1}\)

\(=\dfrac{abc}{ab+b+abc}+\dfrac{abc}{bc+c+abc}+\dfrac{1}{ca+a+1}\)

\(=\dfrac{abc}{b\left(ac+a+1\right)}+\dfrac{abc}{c\left(ab+b+1\right)}+\dfrac{1}{ac+a+1}\)

\(=\dfrac{ac}{ac+a+1}+\dfrac{ab}{ab+b+1}+\dfrac{1}{ac+a+1}\)

\(=\dfrac{ac+1}{ac+a+1}+\dfrac{ab}{ab+b+abc}\)

\(=\dfrac{ac+1}{ac+a+1}+\dfrac{ab}{b\left(ac+a+1\right)}=\dfrac{ac+a+1}{ac+a+1}=1\) (đpcm)

3 tháng 1 2019

Ta có: \(\dfrac{1}{ab+b+1}+\dfrac{1}{bc+c+1}+\dfrac{1}{ca+a+1}\)

=\(\dfrac{1}{ab+b+1}+\dfrac{abc}{bc+c+abc}+\dfrac{b}{abc+ab+b}\)

=\(\dfrac{1}{ab+b+1}+\dfrac{abc}{c\left(ab+b+1\right)}+\dfrac{b}{ab+b+1}\)

=\(\dfrac{1}{ab+b+1}+\dfrac{ab}{ab+b+1}+\dfrac{b}{ab+b+1}\)

=\(\dfrac{ab+b+1}{ab+b+1}\)=1

Suy ra:

\(\dfrac{1}{ab+b+1}+\dfrac{1}{bc+c+1}+\dfrac{1}{ca+a+1}\)=1(abc=1)

(đpcm)

5 tháng 12 2017

Không mất tính tổng quát ta giả sử \(0\le a\le b\le c\le1\)

\(\Rightarrow\left(1-c\right)\left(b-a\right)\ge0\)\(\Leftrightarrow b-a-bc+ac\ge0\Leftrightarrow ac+b\ge a+bc\)

\(\Leftrightarrow ac+b+1\ge a+bc+1\)\(\Rightarrow\dfrac{a}{ac+b+1}\le\dfrac{a}{a+bc+1}\)(1)

ta cũng có : \(\left(1-b\right)\left(c-a\right)\ge0\Leftrightarrow ab+c\ge a+bc\Leftrightarrow ab+c+1\ge a+bc+1\)

\(\Rightarrow\dfrac{b}{ab+c+1}\le\dfrac{b}{a+bc+1}\)\(b\le c\le1\)

nên \(\dfrac{b}{a+bc+1}\le\dfrac{bc}{a+bc+1}\) \(\Rightarrow\dfrac{b}{ab+c+1}\le\dfrac{bc}{a+bc+1}\)(2)

ta lại có : \(\dfrac{c}{a+bc+1}\le\dfrac{1}{a+bc+1}\)(3)

Cộng Ba vế BĐT (1) (2) (3) lại với nhau ta có

\(\dfrac{a}{1+b+ac}+\dfrac{b}{1+c+ab}+\dfrac{c}{1+a+bc}\le\dfrac{a+bc+1}{a+bc+1}=1\)

6 tháng 12 2017

không cần giả sử gì hết , phang luôn \(\left(a-1\right)\left(b-1\right)\ge0\) (:V)

\(\Leftrightarrow ab+1\ge a+b\Leftrightarrow ab+c+1\ge a+b+c\)

\(\Rightarrow VT\le\sum\dfrac{b}{a+b+c}=1\)

Dấu = xảy ra : 2 số bằng 1 , số còn lại tùy ý

Mở rộng : \(\forall a,b,c\in\left[0;1\right]\).Cmr:

\(\dfrac{a}{b+c+1}+\dfrac{b}{c+a+1}+\dfrac{c}{a+b+1}+\left(1-a\right)\left(1-b\right)\left(1-c\right)\le1\)

( Olympic USA 1980 )