K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2017

Do ab + bc + ca = 1 nên ta có : 

\(a\sqrt{\frac{\left(b^2+1\right)\left(c^2+1\right)}{a^2+1}}=a\sqrt{\frac{\left(b^2+ab+ac+bc\right)\left(c^2+ab+ac+bc\right)}{a^2+ab+ac+bc}}\)

\(=a\sqrt{\frac{\left(a+b\right)\left(b+c\right)\left(a+c\right)\left(b+c\right)}{\left(a+b\right)\left(a+c\right)}}=a\sqrt{\left(b+c\right)^2}=a\left(b+c\right)=ab+ac\text{ }\left(1\right)\)

Tương tự : \(b\sqrt{\frac{\left(a^2+1\right)\left(c^2+1\right)}{b^2+1}}=ab+bc\)  (2)và \(c\sqrt{\frac{\left(b^2+1\right)\left(a^2+1\right)}{c^2+1}}=bc+ac\) (3)

Cộng vế với vế của (1) ; (2) ; (3) lại ta được :

\(a\sqrt{\frac{\left(b^2+1\right)\left(c^2+1\right)}{a^2+1}}+b\sqrt{\frac{\left(a^2+1\right)\left(c^2+1\right)}{b^2+1}}+c\sqrt{\frac{\left(b^2+1\right)\left(a^2+1\right)}{c^2+1}}=2\left(ab+bc+ac\right)=2\)

26 tháng 9 2017

khó thế bạn