K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi M là trung điểm của BC

Vì ΔABC đều

mà M là trug điểm của bC

nên MA vuông góc với BC 

BM=CM=a/2

\(AM=\sqrt{a^2-\left(\dfrac{1}{2}a\right)^2}=\dfrac{a\sqrt{3}}{2}\)

\(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=\left|\overrightarrow{CA}+\overrightarrow{BA}\right|=2\cdot AM=2\cdot\dfrac{a\sqrt{3}}{2}=a\sqrt{3}\)

\(\left|\overrightarrow{AB}-\overrightarrow{AC}\right|=\left|\overrightarrow{CA}+\overrightarrow{AB}\right|=CB=a\)

\(\left|\overrightarrow{AB}-\overrightarrow{CA}\right|=\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=a\sqrt{3}\)

vecto AB-vecto BC

=vecto AB+vecto CB

=>|vecto AB+vecto CB|=|vecto BA+vecto BC|=|2vecto BN|(Với N là trung điểm của AC)

=2xBN=a căn 3

NV
7 tháng 3 2021

\(\overrightarrow{AB}.\overrightarrow{CB}+\overrightarrow{AC}.\overrightarrow{BC}=12\)

\(\Leftrightarrow\overrightarrow{BC}\left(\overrightarrow{AC}-\overrightarrow{AB}\right)=12\)

\(\Leftrightarrow\overrightarrow{BC}.\overrightarrow{BC}=12\)

\(\Rightarrow BC^2=12\Rightarrow BC=2\sqrt{3}\)

26 tháng 9 2018

Chọn B.

 

Ta có 

mà 

27 tháng 6 2018

Ta có  M B → = 1 3 M C → ⇔ 3 M B → = M C → ⇔ 3 B M → = C M →

A M → = A B → + ​ B M →   ⇒ 3 A M → = 3 A B → + 3 ​ B M →      ( 1 ) A M → = A C → + ​ C M →       ( 2 )

Lấy (1) trừ (2)  ta được :

2 A M → = 3 A B → + 3 ​ B M →   − A C → + ​ C M →   = 3 A B → − A C → + ​ ( 3 B M → − C M → ) = 3 A B → − A C → + 0 → = 3 A B → − A C → ⇒ A M → = 3 2 A B → − 1 2 A C → = 3 2 u → − 1 2 v →

Đáp án A

29 tháng 10 2023

a: Gọi H là trung điểm của BC

Xét ΔABC có AH là đường trung tuyến

nên \(\overrightarrow{AB}+\overrightarrow{AC}=2\overrightarrow{AH}\)

ΔABC đều có AH là đường trung tuyến

nên \(AH=AB\cdot\dfrac{\sqrt{3}}{2}=3a\cdot\dfrac{\sqrt{3}}{2}\)

=>\(2\cdot AH=3a\sqrt{3}\)

=>\(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=2\cdot AH=3a\sqrt{3}\)

b:

Gọi I là trung điểm của AH

I là trung điểm của AH

=>\(IA=IH=\dfrac{3a\sqrt{3}}{2}\)

ΔABC đều

mà AH là đường trung tuyến

nên AH vuông góc BC

ΔIHC vuông tại H

=>\(CI^2=HI^2+HC^2\)

=>\(CI^2=\left(\dfrac{3a\sqrt{3}}{2}\right)^2+\left(1,5a\right)^2=9a^2\)

=>CI=3a

 

 \(\left|\overrightarrow{CA}-\overrightarrow{HC}\right|=\left|\overrightarrow{CA}+\overrightarrow{CH}\right|\)

\(=\left|2\cdot\overrightarrow{CI}\right|=2CI\)

\(=2\cdot3a=6a\)